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Contemporary vision

The impact of feedforward hierarchies has been undeniable



Some (of my personal)
inspiration from human vision

(see Bruno’s fanstastic talk for a proper description)



Some 1nspiration from human vision

People can distinguish high-level concepts (animal/transport) in under 150ms (Thorpe)

Appears to suggest feed-forward computations suffice (or at least dominate)



Task-driven feedback

“Is ‘X’ inside the closed curve?”

“Visual routines” Ullman 84

Some tasks appear to require purposeful examination



Task-driven feedback

Relation to visual question answering (pointed out by Russakovsky)

“How many slices of pizza are there?”
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Reparse image with the knowledge that it contains a pizza

(Cl) 4 feature maps (52) 6 feature maps (C2) 6 feature maps
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A categorization of tasks

Hochstein & Ahissar 02
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Vision at a glance (feedforward) Vision with scrutiny (+feedback)

Rapid scene categorization Fine-grained recognition

Spatial localization for manipulation




Feedback can occur quickly

V1 neurons tuned for vertical edges respond to figure-ground boundary after 50 ms
(seemingly after V2 activates)

Lee & Mumford 98, 03



Some take-aways from human
vision/neuroscience

1. Some visual tasks will benefit more from feedback
2. Feedback can happen quite quickly

3. Feedback 1s not limited to top-down attention



Preview of results




Bottom-up

Max location

Preview of results

Predicted heatmap




Preview of results

Feedforward activations from layer 1 (~1ms)
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Activations after feedback (~40ms)
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Aside: probabilistic models already do this

Message-passing on “parts + structure models” naturally make use of top-down feedback
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Confession: this was our original motivation



So how do we add feedback to deep models?

Boltzmann machines
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(Convolutional) Boltzmann machines as deep latent-variable models

Salakhutdinov & Hinton 09
Le et al 09

“objects”

Binary latent variables: 1s there a (person, head, oriented edge) at a particular location?

1
P(z) x e°®)  where S(z)= §zTWz + b1z



(Convolutional) Boltzmann machines as deep latent-variable models
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Gibbs sampling:
z;[u] ~ sigmoid(b; + top;[u] + bot;[u])

bot;|u| = Z w;|v]z;—1|u + V] “convolution” Wi
v

topi[u] = Z Wit1|v]zir1|u —v]  “deconvolution” w7,

(Y

Arm detection should depend on low-level and high-level objects found nearby



So why have practical results been dominated by CNNs?

CNNs

(CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

Boltzmann machines
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It seems that efficient inference (parallel computation) and learning (backprop) are key



Solution

Choose an alternative inference strategy that is more amenable to backprop: variational inference

Mean-feild updates (Salakhutdinov & Hinton, Jorden et al, Jain, etc):

z;lu] = sigmoid(b; + bot;[u]| + top;|u])




Implement sequence of inference updates with a neural net

cf. past work on “unrolling inference”: Chen et al 15, Zheng et al 15, Goodfellow et al 13
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zi[u] = sigmoid(b; + bot;[u] + top;[u])
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Bottom-up layerwise updates Feedforward CNN
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Use CNNS to learn to infer on Boltzmann machines

1. Use variational inference rather than Gibbs sampling
(Salakhutdinov & Hinton)

2. Unroll sequence of mean-field updates into a neural net

(Goodfellow et al)
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Use CNNS to learn to infer on Boltzmann machines

1. Use variational inference rather than Gibbs sampling
(Salakhutdinov & Hinton)

2. Unroll sequence of mean-field updates into a recurrent neural net
(Goodfellow et al)
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Z1
Wi T WTz
7 72 7 V4)
t N X .
Z Z Z1 71
T T T Wi \ T Wi
X X X X
Bot-up Bot-up + Top-down CNN Recurrent-CNN




Top-down localization

1. Model “max-pooling” using lateral inhibition connections (red edges)

2. Above model allows for top-down localization
e.g., a car “object” can influence the activation and location of a wheel “part”
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Train unrolled model with backprop

Bottom-up pass
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Train unrolled model with backprop

Bottom-up + top-down pass

Nlmeessen

(cf similar architectures: Autoencoders, DeConvNets,
U-Nets, Hourglass Nets, Ladder Networks)



Train unrolled model with backprop

Bottom-up + top-down pass + bottom-up +....

One can model an infinitely deep model with a finite-number of passes
(by equivalence to mean-feild)

Seems like going deeper and adding skip connections (cf. residual nets) increases performance.
Proposal: let’s use structured probabilistic models as an underlying design principles



Crucial “detail”:
sigmoidal vs rectified activations

Boltzmann: z; € {0, 1}

Do binary variables suffice to pass info along abstraction layers?



Crucial “detail”:
sigmoidal vs rectified activations
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1
P(z) x e°®)  where S(z)= §zTWz + b1z

Boltzmann: z; € {0, 1}

Gaussian: z; € R

Relax binary restriction:
model reduces to a Gaussian (with some caveats), implying features are linear functions of image



Crucial “detail”:
sigmoidal vs rectified activations
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VAN
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1
P(z) x e°®)  where S(z)= §ZTWZ + b1z

Boltzmann: z; € {0, 1}
Gaussian: z; € R

(Socci & Seung 98)  Rectified Gaussian: z; € RT




Deep Rectified Gaussians

1
P(z) x e°®)  where S(z)= §zTWz + b1z

Boltzmann: z; € {0, 1}
Gaussian: z; € R

Rectified Gaussian: z; € R

Hierarhically Rectified Gaussians (Hu & Ramanan 16; come see our CVPR poster!)
pass continuous info between hierarchical layers, but produce nonlinear features

MAP updates:
z;|u] = max(0, b; + top;|u| + bot;|u])



Top-down



Simultaneous localization + visibility prediction

Caltech Occluded Faces occluded-point localization error (% of eye-eye distance)
Bottom-up: 21.26 %
Top-down: 15.3 %

Improvement comes “for free” (no increase in # of parameters)



Human pose estimation
(MPII dataset)
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State-of-the-art (for a fleeting moment)



Take-aways (1)

?

Enforce contextual structure

by post-processing
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- CNNs can be viewed as inference machines (if we untie their hands)
- Blurs distinction between learning and inference (backprop as feedback?)




Take-aways (2)

Rather than training and storing hundreds of task-specific models, learn+store
universal feature extractor for both vision-at-a-glance and with-scrutiny tasks

Scene categorization ~ Landmark locations Coarse scenes
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Thanks!

Please visit poster in workshop and main conference



