Augmenting Feedforward Models with Top-Down Feedback

Deva Ramanan CMU

First author

Stole his talk

Peiyun Hu

Contemporary vision

The impact of feedforward hierarchies has been undeniable

Some (of my personal) inspiration from human vision

(see Bruno's fanstastic talk for a proper description)

Some inspiration from human vision

People can distinguish high-level concepts (animal/transport) in under 150ms (Thorpe)

Appears to suggest feed-forward computations suffice (or at least dominate)

Task-driven feedback

"Is 'X' inside the closed curve?"

"Visual routines" Ullman 84

Some tasks appear to require purposeful examination

Task-driven feedback

Relation to visual question answering (pointed out by Russakovsky)

"How many slices of pizza are there?"

Reparse image with the knowledge that it contains a pizza

A categorization of tasks

Hochstein & Ahissar 02

Vision at a glance (feedforward)

Rapid scene categorization

Vision with scrutiny (+feedback)

Fine-grained recognition Spatial localization for manipulation

Feedback can occur quickly

V1 neurons tuned for vertical edges respond to figure-ground boundary after 50 ms (seemingly after V2 activates)

Lee & Mumford 98, 03

Some take-aways from human vision/neuroscience

1. Some visual tasks will benefit more from feedback

2. Feedback can happen quite quickly

3. Feedback is not limited to top-down attention

Preview of results

VGG

Preview of results

Max location

Predicted heatmap

Bottom-up

Preview of results

Feedforward activations from layer 1 (~1ms)

avg

Activations after feedback (~40ms)

Aside: pro

Message-passing

So how do we add feedback to deep models?

CNNs

Boltzmann machines

(Convolutional) Boltzmann machines as deep latent-variable models

Salakhutdinov & Hinton 09 Le et al 09

Binary latent variables: is there a (person, head, oriented edge) at a particular location?

$$P(z) \propto e^{S(z)}$$
 where $S(z) = \frac{1}{2}z^TWz + b^Tz$

(Convolutional) Boltzmann machines as deep latent-variable models

Gibbs sampling:

$$z_{i}[u] \sim \operatorname{sigmoid}(b_{i} + top_{i}[u] + bot_{i}[u])$$
$$bot_{i}[u] = \sum_{v} w_{i}[v]z_{i-1}[u+v] \quad \text{``convolution''} \quad w_{1}$$
$$top_{i}[u] = \sum_{v} w_{i+1}[v]z_{i+1}[u-v] \quad \text{``deconvolution''} \quad w_{1}$$

Arm detection should depend on low-level sub-parts and high-level objects found nearby

So why have practical results been dominated by CNNs?

CNNs

It seems that efficient inference (parallel computation) and learning (backprop) are key

Solution

Choose an alternative inference strategy that is more amenable to backprop: variational inference

Mean-feild updates (Salakhutdinov & Hinton, Jorden et al, Jain, etc):

 $z_i[u] = \operatorname{sigmoid}(b_i + bot_i[u] + top_i[u])$

Implement sequence of inference updates with a neural net

cf. past work on "unrolling inference": Chen et al 15, Zheng et al 15, Goodfellow et al 13

 $z_i[u] = \operatorname{sigmoid}(b_i + bot_i[u] + top_i[u])$

Bottom-up layerwise updates

Feedforward CNN

Use CNNS to learn to infer on Boltzmann machines

- 1. Use variational inference rather than Gibbs sampling (Salakhutdinov & Hinton)
- 2. Unroll sequence of mean-field updates into a neural net (Goodfellow et al)

Use CNNS to learn to infer on Boltzmann machines

- 1. Use variational inference rather than Gibbs sampling (Salakhutdinov & Hinton)
- 2. Unroll sequence of mean-field updates into a recurrent neural net (Goodfellow et al)

Top-down localization

- 1. Model "max-pooling" using lateral inhibition connections (red edges)
- 2. Above model allows for top-down localization e.g., a car "object" can influence the activation and location of a wheel "part"

Train unrolled model with backprop

Bottom-up pass

Train unrolled model with backprop

Bottom-up + top-down pass

(cf similar architectures: Autoencoders, DeConvNets, U-Nets, Hourglass Nets, Ladder Networks)

Train unrolled model with backprop

Bottom-up + top-down pass + bottom-up +....

One can model an infinitely deep model with a finite-number of passes (by equivalence to mean-feild)

Seems like going deeper and adding skip connections (cf. residual nets) increases performance. Proposal: let's use structured probabilistic models as an underlying design principles

Crucial "detail": sigmoidal vs rectified activations

$$P(z) \propto e^{S(z)}$$
 where $S(z) = \frac{1}{2}z^TWz + b^Tz$
Boltzmann: $z_i \in \{0, 1\}$

Do binary variables suffice to pass info along abstraction layers?

Crucial "detail": sigmoidal vs rectified activations

$$P(z) \propto e^{S(z)}$$
 where $S(z) = \frac{1}{2}z^TWz + b^Tz$
Boltzmann: $z_i \in \{0, 1\}$
Gaussian: $z_i \in R$

Relax binary restriction:

model reduces to a Gaussian (with some caveats), implying features are linear functions of image

Crucial "detail": sigmoidal vs rectified activations

$$P(z) \propto e^{S(z)}$$
 where $S(z) = \frac{1}{2}z^TWz + b^Tz$
Boltzmann: $z_i \in \{0, 1\}$
Gaussian: $z_i \in R$
& Seung 98) Rectified Gaussian: $z_i \in R^+$

(Socci a

Deep Rectified Gaussians

$$P(z) \propto e^{S(z)} \quad \text{where} \quad S(z) = \frac{1}{2}z^T W z + b^T z$$

Boltzmann: $z_i \in \{0, 1\}$
Gaussian: $z_i \in R$
Rectified Gaussian: $z_i \in R^+$

Hierarhically Rectified Gaussians (Hu & Ramanan 16; come see our CVPR poster!) pass continuous info between hierarchical layers, but produce nonlinear features

MAP updates:

 $z_i[u] = \max(0, b_i + top_i[u] + bot_i[u])$

Coarse-to-fine

Bottom-up

Top-down

Simultaneous localization + visibility prediction

Caltech Occluded Faces occluded-point localization error (% of eye-eye distance) Bottom-up: 21.26 % Top-down: 15.3 %

Improvement comes "for free" (no increase in # of parameters)

Human pose estimation (MPII dataset)

State-of-the-art (for a fleeting moment)

Take-aways (1)

- CNNs can be viewed as inference machines (if we untie their hands)
- Blurs distinction between learning and inference (backprop as feedback?)

Take-aways (2)

Rather than training and storing hundreds of task-specific models, learn+store universal feature extractor for both vision-at-a-glance and with-scrutiny tasks

Thanks!

Please visit poster in workshop and main conference