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(a) (b)

Figure 6: Facial landmark localization results of QP2 on
AFLW, where landmark ids are denoted by color. We only
plot landmarks annotated visible. Our bidirectional model
is able to deal with large variations in illumination, appear-
ance and pose (a). We show images with multiple chal-
lenges present in (b).

of a FCN [28] defined on a VGG-16 network [37], and so
represents quite a strong baseline. Also recall that QP2

adds top-down reasoning without any increase in the num-
ber of parameters. We will show this consistently improves
performance, sometimes considerably. Unless otherwise
stated, results are presented for a 4-scale multiscale model.

AFLW: The AFLW dataset [23] is a large-scale real-
world collection of 25,993 faces in 21,997 real-world im-
ages, annotated with facial keypoints. Notably, these faces
are not limited to be responses from an existing face detec-
tor, and so this dataset contains more pose variation than
other landmark datasets. We hypothesized that such pose
variation might illustrate the benefit of bidirectional reason-
ing. Due to a lack of standard splits, we randomly split
the dataset into training (60%), validation (20%) and test
(20%). We visualize qualitative results in Fig. 6 and quan-
titative results in Fig. 7. As this is not a standard bench-
mark dataset, we compare to ourselves for exploring the
best practices to build multiscale predictors for keypoint lo-
calization.

COFW: Caltech Occluded Faces-in-the-Wild
(COFW) [2] is dataset of 1007 face images with se-
vere occlusions. We present qualitative results in Fig. 8 and
Fig. 9, and quantitative results in Table 1 and Fig. 10. Our
bottom-up QP1 already performs near the state-of-the-art,
while the QP2 significantly improves in accuracy of visible
landmark localization and occlusion prediction. In terms
of the latter, our model even approaches upper bounds that
make use of ground-truth labels [7]. Our models are not
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Figure 7: We plot the fraction of recalled face images whose
average pixel localization error in AFLW ( normalized by
face size [55]) is below a threshold. We compare our
bottom-up and top-down models with varying numbers of
layers used for multiscale prediction, following the naming
convention of FCN [28] (where the Nx encodes the upsam-
pling factor needed to resize the predicted heatmap to the
original image resolution.) Single-scale models (QP1-32x
and QP2-32x) are identical but perform quite poorly, not
localizing any keypoints with 2.5% of the face size. Adding
more scales dramatically improves performance, and more-
oever, as we add additional scales, the relative improvement
of QP2 also increases (as finer-scale features benefit the
most from feedback.)

Figure 8: Visualization of keypoint predictions by QP1 and
QP2 on two example COFW images. Both our models pre-
dict both keypoint locations and their visibility (produced
by thresholding the value of the heatmap confidence at the
predicted location). We denote (in)visible keypoint predic-
tions with (red)green dots, and also plot the raw heatmap
prediction as a colored distribution overlayed on a darkened
image. Both our models correctly estimate keypoint visibil-
ity, but our bottom-up models QP1 misestimate their loca-
tions (because bottom-up evidence is misleading during oc-
clusions). By integrating top-down knowledge (perhaps en-
coding spatial constraints on configurations of keypoints),
QP2 is able to correctly estimate their locations.

quite state-of-the-art in localizing occluded points. We
believe this may point to a limitation in the underlying
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Contemporary vision

The impact of feedforward hierarchies has been undeniable



Some (of my personal)  
inspiration from human vision

(see Bruno’s fanstastic talk for a proper description)



Some inspiration from human vision
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Appears to suggest feed-forward computations suffice (or at least dominate)

People can distinguish high-level concepts (animal/transport) in under 150ms (Thorpe)



Task-driven feedback
“Is ‘X’ inside the closed curve?”

50 ms 50 ms 500 ms

“Visual routines” Ullman 84

Some tasks appear to require purposeful examination 



Task-driven feedback
Relation to visual question answering (pointed out by Russakovsky)

“How many slices of pizza are there?”

Reparse image with the knowledge that it contains a pizza

Pizza is present



Hochstein & Ahissar 02

Vision at a glance (feedforward)
Rapid scene categorization         Fine-grained recognition 

Spatial localization for manipulation

Vision with scrutiny (+feedback)

A categorization of tasks



V1 neurons tuned for vertical edges respond to figure-ground boundary after 50 ms 
(seemingly after V2 activates)

Lee & Mumford 98, 03

keys even after they have not performed the oddball de-
tection task for over a year. It seems that this coupling
between V2 and V1 had increased in strength with prac-
tice and become more or less automatic.

We suspect that the enhancement signal observed here
is very similar to Lamme’s46 figure–ground enhancement
effect observed in the texture figures. In that experi-
ment, V1 neurons’ responses to different parts of the tex-
ture stimuli along a horizontal line across the center of
the stimuli were studied. The stimuli include 4-deg-wide
textured squares in a background defined by orthogonal
textures [Figs. 8(a) and 8(b)]. When the responses to the
two complementary stimuli were summed at the corre-
sponding locations, the response inside the figure was
found to be stronger than the response outside the figure.
When this experiment was repeated, we41 found that
there was a general uniform enhancement within the fig-
ure, which abruptly terminated at its boundary [as shown
in Figs. 8(d) and 8(e)], even though the magnitude of the
effect was !15%—significantly weaker than observed
earlier.46,47 [Note that when preferred orientation of the
cells was parallel to that of the texture boundary, a very
strong boundary effect was found to be superimposed on
the interior enhancement effect, as shown in Fig. 8(d)].
The enhancement effect within an object’s surface is remi-
niscent of the ‘‘coloring’’ operation in Ullman’s70 visual
routines. Coloring an object precisely within the bound-

ary of a surface requires the spatial precision provided by
the high-resolution buffer.

The beliefs on 3D shape from V2 might provide the nec-
essary priors to modulate the parallel pop-out computa-
tion and the precise localization of the pop-out target in
V1. The data suggest that these priors contain not only
3D information but also the information on saliency and
behavioral relevance.49 When we changed the top-down
priors, for example, by manipulating the presentation fre-
quency of the different oddball stimuli, the monkey’s re-
action time and behavioral accuracy improved for the
more-frequent stimuli. The change in the behavioral
performance of the monkeys was often accompanied by a
parallel change in the relative pop-out strength in the
neural signals. These interactions among statistics of
stimuli, behavioral experience, and neural processing are
characteristic of a hierarchical Bayesian-inference frame-
work.

Hierarchical inference is most evident when stimuli are
ambiguous and the correct interpretation requires inte-
gration of multiple contextual factors for disambiguation.
In the case of Kanizsa square, there are several possible
hypotheses for explaining the bottom-up data. The brain
seems to choose the simplest explanation: that a white
square is occluding four black circular disks, even at the
extra expense of hallucinating a subjective contour at lo-
cations where there is really no visual evidence for it. It

Fig. 8. (a)–(c) Three examples of the texture stimuli used in the experiment. Different parts of the stimuli, along a horizontal line
across the middle of the square or across the strip, were placed on the receptive field of the recorded neuron over successive trials. The
width of the square or the strip is 4°. (d), (e). Spatiotemporal evolution of the summed response of a population of V1 neurons to the
texture squares. The summed response was obtained by adding the response to stimulus (a) and the response to stimulus (b) at the
corresponding locations. This addition eliminates the effect due to orientation tuning and reveals a signal that enhances the figure’s
interior relative to the background. The spatial offset is the distance in degrees of visual angle from the center of the square or the strip;
hence !2° and 2° offsets represent the boundary locations. When the neurons’ preferred orientation was parallel to the texture bound-
aries, a very strong boundary signal was superimposed on the interior enhancement (coloring) signal [(d)]. When the neurons’ preferred
orientation was orthogonal to the vertical texture boundaries, the enhancement was relatively uniform within the figure [(e)]. (f).
Population-averaged response of a set of vertical neurons to stimulus (c). The initial response was characterized by a burst, whose
magnitude was correlated with sensitivity to local feature orientation, followed by a more sustained response at a lower level. The
response at the boundary is significantly higher than the response at the interior. These phenomena underscore the interplay among
resonance, competition and ‘‘explaining away.’’ See Lee et al.41 for details.

1444 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 T. S. Lee and D. Mumford

Feedback can occur quickly



Some take-aways from human 
vision/neuroscience

1. Some visual tasks will benefit more from feedback 

2. Feedback can happen quite quickly 

3. Feedback is not limited to top-down attention



Preview of results

“Fully convolutional” VGG “Top-down” VGG

(No increase in parameters)

Multi-scale CNN Hierarchical Probabilistic Model
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Single-scale CNN
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Preview of results

Method Accuracy (SP) Error Reduction
CRF [18] 93.23% 0
Spatial CRF [18] 93.95% 10.64%
CRBM [18] 94.10% 12.85%
GLOC [18] 94.95% 25.41%
CLVM1 96.05% 41.60%
CLVM2 96.38% 46.60%
M-CLVM1 96.11% 42.59%
M-CLVM2 96.72% 51.48%
Oracle 99.97% 100.00%

Table 1: We plot superpixel-wise segmentation accuracy on
LFW-Parts, following the protocol introduced in [18]. We
show qualitative results in Fig. 9. We report both overall
acurracy and error reduction with respect to a CRF base-
line (as recommended by [18]). Our bottom-up baseline
(CLVM1) outperforms all published work. Adding top-
down feedback (CLVM2) improves results, while adding
multi-task keypoint targets during learning (M-CLVM2)
produces the best overall performance. We further exam-
ine the latter model in Fig. 10 and Fig. 11.
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Figure 8: The left plots the cumulative error distribution
for keypoint localization on LFW-Parts. The right plots the
percentage of test images with an average localization er-
ror below 5%. Our two-pass models with feedback signifi-
cantly outperform one-pass bottom-up variants.

point locations by interactively applying and correcting the
landmark detector trained from AFLW. We tabulate results
for pixel segmentation in Table 1 and keypoint location in
Fig. 8. We refer the reader to the captions for a detailed
analysis, but overall, we find that bidirectional top-down
feedback is crucial for multi-task prediction, and that a sin-
gle multi-task architecture performs as well (or even better
than) multiple single-task architectures. In terms of seg-
mentation, we reduce the best reported error [18] by a factor
of 2. Fig. 9 visualizes qualitative results, while Fig. 10 and
Fig. 11 examine our best-performing model (M-CLVM2) in
detail.

Pascal Person: The Pascal 2011 Person dataset [12]
consists of 7,368 person instances, each annotated with: (1)

Figure 9: Segmentation and facial keypoint localization re-
sults on LFW-Parts. We use colors to denote hair (red), skin
(green) and background (blue). In general, bottom-up mod-
els CLVM1 and M-CLVM1 tend to predict pixelated seg-
ments because they use features from higher layers (that are
highly nonlinear but spatially quantized). Adding top-down
feedback (CLVM2) tends to produce smoother segmenta-
tions, while multi-task training (M-CLVM2) also removes
spurious pixels.

Figure 10: The top 3 rows correspond to 3 (out of the
64) channel activations of z

0
1 (computed from a bottom-

up pass). Columns correspond to activations computed on
different images. The bottom 3 rows correspond to the
same channel activations from z1 (computed after top-down
feedback). Feedback-aware feature channels better capture
semantic information corresponding to hair (Channel 7),
skin (Channel 61), and background (Channel 33). Classi-
fiers defined on such features produce better segmentations
(FIg. 11). The last column shows the average channel acti-
vation of both z

0
1 and z1 across different images.
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Table 1: We plot superpixel-wise segmentation accuracy on
LFW-Parts, following the protocol introduced in [18]. We
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down feedback (CLVM2) improves results, while adding
multi-task keypoint targets during learning (M-CLVM2)
produces the best overall performance. We further exam-
ine the latter model in Fig. 10 and Fig. 11.
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feedback is crucial for multi-task prediction, and that a sin-
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sults on LFW-Parts. We use colors to denote hair (red), skin
(green) and background (blue). In general, bottom-up mod-
els CLVM1 and M-CLVM1 tend to predict pixelated seg-
ments because they use features from higher layers (that are
highly nonlinear but spatially quantized). Adding top-down
feedback (CLVM2) tends to produce smoother segmenta-
tions, while multi-task training (M-CLVM2) also removes
spurious pixels.

Figure 10: The top 3 rows correspond to 3 (out of the
64) channel activations of z

0
1 (computed from a bottom-

up pass). Columns correspond to activations computed on
different images. The bottom 3 rows correspond to the
same channel activations from z1 (computed after top-down
feedback). Feedback-aware feature channels better capture
semantic information corresponding to hair (Channel 7),
skin (Channel 61), and background (Channel 33). Classi-
fiers defined on such features produce better segmentations
(FIg. 11). The last column shows the average channel acti-
vation of both z
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Feedforward activations from layer 1 (~1ms)

Activations after feedback  (~40ms)



Aside: probabilistic models already do this
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

������ ������ ������ �

�
Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

Message-passing on “parts + structure models” naturally make use of top-down feedback

Confession: this was our original motivation



So how do we add feedback to deep models?

CNNs

Boltzmann machines



(Convolutional) Boltzmann machines as deep latent-variable models

z0

z1

z2

Salakhutdinov & Hinton 09 
Le et al 09

Binary latent variables: is there a (person, head, oriented edge) at a particular location?

“objects”

“parts”

“sub- 
parts”

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+



(Convolutional) Boltzmann machines as deep latent-variable models

z0

z1

w1

z2

w2

“deconvolution”

“convolution”

Gibbs sampling:

zi[u] ⇠ sigmoid(bi + topi[u] + boti[u])

boti[u] =

X

v

wi[v]zi�1[u+ v]

topi[u] =

X

v

wi+1[v]zi+1[u� v]

w1

wT2

Arm detection should depend on low-level sub-parts and high-level objects found nearby



So why have practical results been dominated by CNNs?

CNNs

Boltzmann machines

It seems that efficient inference (parallel computation) and learning (backprop) are key



Solution
Choose an alternative inference strategy that is more amenable to backprop: variational inference

zi[u] = sigmoid(bi + boti[u] + topi[u])

Mean-feild updates (Salakhutdinov & Hinton, Jorden et al, Jain, etc): 



Implement sequence of inference updates with a neural net

x

z1

z2

x

z1

z2

w1

w2

Bottom-up layerwise updates Feedforward CNN

cf. past work on “unrolling inference”: Chen et al 15, Zheng et al 15, Goodfellow et al 13

zi[u] = sigmoid(bi + boti[u] + topi[u])



Use CNNS to learn to infer on Boltzmann machines

1. Use variational inference rather than Gibbs sampling 
(Salakhutdinov & Hinton) 

2. Unroll sequence of mean-field updates into a neural net 
(Goodfellow et al)

x

z1

z2

x

z1

z2

Bot-up Bot-up + Top-down

x

z1

z2

CNN

w1

w2

Layerwise updates Neural net implementation
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Use CNNS to learn to infer on Boltzmann machines

1. Use variational inference rather than Gibbs sampling 
(Salakhutdinov & Hinton) 

2. Unroll sequence of mean-field updates into a recurrent neural net 
(Goodfellow et al)
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Layerwise updates Neural net implementation



Top-down localization

1. Model “max-pooling” using lateral inhibition connections (red edges) 

2. Above model allows for top-down localization  
e.g., a car “object” can influence the activation and location of a wheel “part”



Train unrolled model with backprop
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Bottom-up + top-down pass

Train unrolled model with backprop

(cf similar architectures: Autoencoders, DeConvNets,  
U-Nets, Hourglass Nets, Ladder Networks)



3

Bottom-up + top-down pass + bottom-up +….

One can model an infinitely deep model with a finite-number of passes  
(by equivalence to mean-feild)

Seems like going deeper and adding skip connections (cf. residual nets) increases performance.  
Proposal: let’s use structured probabilistic models as an underlying design principles 

Train unrolled model with backprop



Crucial “detail”:  
sigmoidal vs rectified activations

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+

Do binary variables suffice to pass info along abstraction layers?



Crucial “detail”:  
sigmoidal vs rectified activations

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+

Relax binary restriction:  
model reduces to a Gaussian (with some caveats), implying features are linear functions of image



Crucial “detail”:  
sigmoidal vs rectified activations

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+(Socci & Seung 98)
The Rectified Gaussian Distribution 353 

(a) (b) 

Figure 2: The competitive distribution for two variables. (a) A non-convex energy 
function with two constrained minima on the x and y axes. Shown are contours of 
constant energy, and arrows that represent the negative gradient of the energy. (b) 
The rectified Gaussian distribution has two peaks. 

The rectified Gaussian happens to be most interesting in the nonconvex case, pre-
cisely because of the possibility of multiple minima. The consequence of multiple 
minima is a multimodal distribution, which cannot be well-approximated by a stan-
dard Gaussian. We now consider two examples of a multimodal rectified Gaussian. 

4 COMPETITIVE DISTRIBUTION 

The competitive distribution is defined by 
Aij -dij + 2 (5) 

bi = 1; (6) 
We first consider the simple case N = 2. Then the energy function given by 

X2 +y2 
E(x,y)=- 2 +(x+y)2_(x+y) (7) 

has two constrained minima at (1,0) and (0,1) and is shown in figure 2(a). It 
does not lead to a normalizable distribution unless the nonnegativity constraints are 
imposed. The two constrained minima of this nonconvex energy function correspond 
to two peaks in the distribution (fig 2(b)). While such a bimodal distribution 
could be approximated by a mixture of two standard Gaussians, a single Gaussian 
distribution cannot approximate such a distribution. In particular, the reduced 
probability density between the two peaks would not be representable at all with a 
single Gaussian. 
The competitive distribution gets its name because its energy function is similar 
to the ones that govern winner-take-all networks[9]. When N becomes large, the 
N global minima of the energy function are singleton vectors (fig 3), with one 
component equal to unity, and the rest zero. This is due to a competitive interaction 
between the components. The mean of the zero temperature distribution is given 
by 

(8) 

The eigenvalues of the covariance 
1 1 

(XiXj) - (Xi)(Xj) = N dij - N2 (9) 



Deep Rectified Gaussians

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+

Hierarhically Rectified Gaussians (Hu & Ramanan 16; come see our CVPR poster!) 
pass continuous info between hierarchical layers, but produce nonlinear features

MAP updates:

zi[u] = max(0, bi + topi[u] + boti[u])



Coarse-to-fine

Bottom-up

Top-down



Simultaneous localization + visibility prediction
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(a) (b)

Figure 9: Facial landmark localization and occlusion pre-
diction results of QP2 on COFW, where red means oc-
cluded. Our bidirectional model is robust to occlusions
caused by objects, hair, and skin. We also show cases where
the model predicts the occlusion correctly but fails to local-
ize them accurately.(b).

Visible Points All Points
RCPR [2] - 8.5
RPP [50] - 7.52
HPM [6] - 7.46
SAPM [7] 5.77 6.89
FLD-Full [49] 5.18 5.93
QP1 5.26 10.06
QP2 4.67 7.87

Table 1: Average keypoint localization error (as a fraction of
inter-occular distance) on COFW. When adding top-down
feedback (QP2), our accuracy on visible keypoints signifi-
cantly improves upon prior work. In the text, we argue that
such localization results are more meaningful than those for
occluded keypoints. In Fig. 10, we show that our models
signifantly outperform all prior work in terms of keypoint
visibility prediction.

benchmark. Consider an image of a face mostly occluded
by the hand (Fig. 8). In such cases, humans may not even
agree on keypoint locations, indicating that a keypoint
distribution may be a more reasonable target output. Our
models provide such uncertainty estimates, while most
keypoint architectures based on regression cannot.

Pascal Person: The Pascal 2011 Person dataset [13]
consists of 11,599 person instances, each annotated with a
bounding box around the visible region and up to 23 hu-
man keypoints per person. This dataset contains signifi-
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Figure 10: Keypoint visibility prediction on COFW, mea-
sured by precision-recall curves. Our bottom-up model
CLVM1 already outperforms all prior that does not make
use of ground-truth segmentation masks (where acronyms
correspond those in Table 1). Our top-down model QP2

even approaches the accuracy of such upper bounds. Fol-
lowing past work, we visualize visibility predictions in
Fig. 9 at a precision of 80%. At such a level, we nearly
double the best previously-published recall of FLD [50].

↵ 0.10 0.20
CNN+prior [29] 47.1 -
QP1 66.5 78.9
QP2 68.8 80.8

Table 2: We show human keypoint localization performance
on PASCAL VOC 2011 Person following the evaluation
protocol in [29]. PCK refers to the fraction of keypoints
that were localized within some distance (measured with re-
spect to the instance’s bounding box). Our bottom-up mod-
els already significantly improve results across all distance
thresholds (↵ = 10, 20%). Our top-down models add a 2%
improvement without increasing the number of parameters.

cant occlusions. We follow the evaluation protocol of [29]
and present results for localization of visible keypoints on
a standard testset in Fig. 11 and Table 2. Our bottom-up
QP1 model already significantly improves upon the state-
of-the-art (including prior work making use of deep fea-
tures), while our top-down models QP2 further improve
accuracy by 2% without any increase in model complex-
ity (as measured by the number of parameters). Note that
the standard evaluation protocols evaluate only visible key-
points. In supplementary material, we demonstrate that our
model can also accurately predict keypoint visibility “for
free”.

MPII: MPII is (to our knowledge) the largest available
articulated human pose dataset [1], consisting of 40,000
people instances annotated with keypoints, visibility flags,

7

Caltech Occluded Faces occluded-point localization error (% of eye-eye distance) 
Bottom-up: 21.26 %    
Top-down: 15.3 %    

Improvement comes “for free” (no increase in # of parameters)



Human pose estimation  
(MPII dataset)
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Figure 11: Keypoint localization results of QP2 on Pascal
VOC 2011 Person. Our method predicts both keypoint loca-
tions and their visibility. We draw skeletons only on visible
keypoints. Our model is robust to challenges arising from
pose variations and occlusions.

and activity labels. We present qualitative results in Fig. 12
and quantitative results in

Table 3: Our top-down model QP2 appears to outper-
form all prior work for almost all keypoints. Our results
compare favorably to methods that post-process CNN out-
puts with graphical models that constrain keypoints to lie in
consistent spatial layouts [45]. Our models seem to capture
such top-down constraints without requiring any additional
parameters. Note that this dataset also includes visibility
labels for keypoints in training and test, even though these
are not part of the standard evaluation protocol. In supple-
mentary material, we demonstrate that visibility prediction
on MPII also benefits from top-down feedback.

Conclusion: We show that Hierarchical Rectified Gaus-
sian models can be optimized with rectified neural net-
works. From a modeling perspective, this observation al-
lows one to train hierarchical probabilistic models with neu-
ral toolboxes. From a neural net perspective, this observa-
tion provides a theoretically-elegant approach for endowing
CNNs with top-down feedback – without any increase in
the number of parameters. To thoroughly evaluate our mod-
els, we focus on “vision-with-scrutiny” tasks such as key-
point localization, making use of well-known benchmark
datasets. We introduce (near) state-of-the-art bottom-up
baselines based on multiscale prediction, and consistently
improve upon those results with top-down feedback (partic-
ularly during occlusions when bottom-up evidence may be
ambiguous).

Figure 12: Keypoint localization results of QP2 on the
MPII Human Pose testset. We quantitatively evaluate re-
sults on the validation set in Table 2. Our models are able to
localize keypoints even under significant occlusions. Recall
that our models can also predict visibility labels “for free”,
which are evaluated in supplementary material.

Head Shou Elb Wri Hip Kne Ank Upp Full Full
-Ank

GM [10] - 36.3 26.1 15.3 - - - 25.9 - -
ST [36] - 38.0 26.3 19.3 - - - 27.9 - -
YR [51] 73.2 56.2 41.3 32.1 36.2 33.2 34.5 43.2 44.5 45.4
PS [34] 74.2 49.0 40.8 34.1 36.5 34.4 35.1 41.3 44.0 44.7
TB [44] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 84.5 82.0 83.5
QP1 94.7 90.4 82.0 75.8 82.0 71.6 52.6 82.8 79.5 82.1
QP2 95.5 91.8 83.7 78.1 82.6 74.3 54.5 84.6 81.3 83.9
Oracle* 100 100 100 99.5 99.9 99.0 66.2 99.8 94.9 99.7

Table 3: We show PCKh-0.5 keypoint localization results
on MPII using the recommended benchmark protocol [1].
We plot Oracle* performance (compute on the val set) to
illustrate the fact that many ankle keypoints lie outside the
provided bounding boxes. Prior methods appear to use in-
formation outside the provided bounding boxes, while we
only use interior pixels. Our results are on par with or
outperform the state-of-the-art, particularly when evaluat-
ing the upper body or full body except for the ankle.
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State-of-the-art (for a fleeting moment) 



Take-aways (1)

Enforce contextual structure 
by post-processing

versus

• CNNs can be viewed as inference machines (if we untie their hands) 
• Blurs distinction between learning and inference (backprop as feedback?)



Take-aways (2)

Image

Scene categorization Landmark locations

Image

….

Coarse scenes

Image

Mid-level parts

Rather than training and storing hundreds of task-specific models, learn+store 
universal feature extractor for both vision-at-a-glance and with-scrutiny tasks

Fine-scale edges



Thanks!

Please visit poster in workshop and main conference


