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Perception as an Inference Problem



What are the principles governing 
information processing in this system?



faces‘Gabor filters’ .      .      ?     .     . objects

an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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Two views of visual system function

•Deduction  
- feature extraction, classification  
- (Hubel & Wiesel;  Fukushima;  ‘deep learning’)

• Inference  
- generative models, recurrent computation  
- (Helmholtz;  Nakayama;  Kersten & Yuille;  
   Geman;  Lee & Mumford)



Hubel & Wiesel (1962, 1965)
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FIG. 38. Wiring diagrams that might 
account for the properties of hypercomplex 
cells. A: hypercomplex cell responding to 
single stopped edge (as in Figs. 8 through 
11) receives projections from two complex 
cells, one excitatory to the hypercomplex 
cell (E), the other inhibitory (I). The ex- 
citatory complex cell has iti receptive field 
in the region indicated by the left (con- 
tinuous) rectangle; the inhibitory cell has 
its field in the area indicated by the right 
(interrupted) rectangle. The hypercomplex 
field thus includes both areas, one being the 
activating region, the other the antagonistic. 
Stimulating the left region alone resulti in 
excitation of the cell, whereas stimulating 
both regions together is without effect. & 
scheme proposed to explain the properties 
of a hypercomplex cell responding to a 
double-stopped slit (such as that described 
in Figs. 16 and 17, except for the difference 
in orientation, or the hypercomplex cell with 
small spikes in Fig. 27). The cell receives 
excitatory input from a complex cell whose 
vertically oriented field is indicated to the 
left by a continuous rectangle; two addi- 
tional complex cells inhibitory to the hyper- 
complex cell have vertically oriented fields 
flanking the first one above and below, 
shown by interrupted rectangles. In an al- 
ternative scheme (C), the inhibitory input is 

supplied by a single cell with a large field indicated by the entire interrupted rectangle. In 
either case (13 or C), a slit covering the entire field of the hypercomplex cell would be in- 
effective. Scheme C requires that a slit covering but restricted to the center region be too 
short to affect the inhibitory cell. 

its field stopped at only one end, is given in Fig. 38A; the cell could be the 
one illustrated in Figs. 8 through 11, Only two afferent cells are shown, an 
excitatory and an inhibitory, but there might be many of each type. In Fig. 
38, B and C, two possible arrangements are suggested to account for the 
properties of a double-stopped hypercomplex cell (see Figs. 16 through 20, 
and 27). Figure 38B requires two inhibitory cells, or sets of cells, both com- 
plex, with their fields covering the two flanking areas. In an alternative 
scheme (Fig. 38C), the hypercomplex cell receives an excitatory input from a 
complex cell whose field covers the activating center, as before, and an 
inhibitory input from a single complex cell with a field having the same size 
and position as the entire hypercomplex field, both center and flanks. This 
arrangement could only work efficiently if the inhibitory afferent gave a good 
response to a long slit, but little or no response to a stimulus confined to 
the activating area. This was true for the complex cell (large spikes) of 
Fig. 27, which responded well to a large slit, but not to a small one. Except 
for the difference in ocular dominance, one might imagine that the two 
simultaneously recorded cells in Fig. 27 were interconnected, the complex 
cell sending inhibitory connections to the hypercomplex one. 

D. H. HUBEL AND T. N. WIESEL
field such as that of Text-fig. 2F) are of the same order of magnitude as
the diameters of geniculate receptive-field centres, at least for fields in or
near the area centralis. Hence the fineness of discrimination implied by
the small size of geniculate receptive-field centres is not necessarily lost at
the cortical level, despite the relatively large total size of many cortical
fields; rather, it is incorporated into the detailed substructure of the
cortical fields.

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with 'on' centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated 'on' centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.

In a similar way, the simple fields of Text-fig. 2D-G may be constructed
by supposing that the afferent 'on'- or 'off'-centre geniculate cells have
their field centres appropriately placed. For example, field-type G could
be formed by having geniculate afferents with 'off' centres situated in the
region below and to the right of the boundary, and 'on' centres above and
to the left. An asymmetry of flanking regions, as in field E, would
be produced if the two flanks were unequally reinforced by 'on'-centre
afferents.
The model of Text-fig. 19 is based on excitatory synapses. Here the

suppression of firing on illuminating an inhibitory part of the receptive
field is presumed to be the result of withdrawal of tonic excitation, i.e. the
inhibition takes place at a lower level. That such mechanisms occur in the
visual system is clear from studies of the lateral geniculate body, where
an 'off'-centre cell is suppressed on illuminating its field centre because of
suppression of firing in its main excitatory afferent (Hubel & Wiesel, 1961).
In the proposed scheme one should, however, consider the possibility of
direct inhibitory connexions. In Text-fig. 19 we may replace any of the
excitatory endings by inhibitory ones, provided we replace the corre-
sponding geniculate cells by ones of opposite type ('on '-centre instead of
' off'-centre, and conversely). Up to the present the two mechanisms have
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not been distinguished, but there is no reason to think that both do not
occur.
The properties of complex fields are not easily accounted for by sup-

posing that these cells receive afferents directly from the lateral geniculate
body. Rather, the correspondence between simple and complex fields
noted in Part I suggests that cells with complex fields are of higher order,
having cells with simple fields as their afferents. These simple fields would
all have identical axis orientation, but would differ from one another in
their exact retinal positions. An example of such a scheme is given in
Text-fig. 20. The hypothetical cell illustrated has a complex field like that

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, ofwhich three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

of Text-figs. 5 and 6. One may imagine that it receives afferents from a set
of simple cortical cells with fields of type C, Text-fig. 2, all with vertical
axis orientation, and staggered along a horizontal line. An edge of light
would activate one or more of these simple cells wherever it fell within the
complex field, and this would tend to excite the higher-order cell.

Similar schemes may be proposed to explain the behaviour of other
complex units. One need only use the corresponding simple fields as
building blocks, staggering them over an appropriately wide region. A
cell with the properties shown in Text-fig. 3 would require two types of
horizontally oriented simple fields, having 'off' centres above the hori-
zontal line, and 'on' centres below it. A slit of the same width as these
centre regions would strongly activate only those cells whose long narrow

143

Simple

Complex

Hypercomplex



input data (x)

output (y)

y = f(x;w)



Is this the goal of vision?



lens eye is indeed specialized for looking up through the water
surface to exploit terrestrial or celestial visual cues.

With this result, it is tempting to speculate that the upper
lens eye is used to detect the mangrove canopy through
Snell’s window, such that the approximately 1 cm large
animals can find their habitat between the mangrove prop
roots and remain there even in the presence of tidal or storm-
water currents. To evaluate the possibility that the upper lens
eye detects the position of the mangrove canopy through
Snell’s window, we made still pictures using a wide-angle
lens looking up through Snell’s window in the natural habitat.
The pictures were taken from just under the surface to make
Snell’s window cover the same area of the surface as seen
by the medusae. In the pictures, it was easy to follow the
mangrove canopy, which shifted from covering most of Snell’s
window to covering just the edge of Snell’s window when the
camera was slowly moved outward to about 20 m away from
the lagoon edge (Figure 2).

To determine what medusae of T. cystophora would see
with their upper lens eyes, we used the optical model [2] of
the eye to calculate the point-spread function of the optics at
different retinal locations. Applying these point-spread func-
tions to still images of Snell’s window in themangrove swamp,
we were able to simulate the retinal image formed in the upper
lens eyes as a jellyfish moves about in the mangrove lagoon.
The results (Figure 2) confirm that despite the severely under-
focused eyes and blurred image [2], the approximately 5 m tall
mangrove canopy can be readily detected at a distance of 4 m
from the lagoon edge and, with some difficulty, can be de-
tected even at a distance of 8 m (detection depends on the
amount of surface ripple and the height of themangrove trees).
These results thus predict that if T. cystophora medusae use
their upper lens eyes to guide them to the correct habitat at
the lagoon edge, then they would swim toward this edge if
they are closer than about 8 m away from it. Also, if they are
farther out in the lagoon, surface ripple and their poor visual

resolution will prevent detection of the mangrove canopy,
and the animals would not be able to determine the direction
to the closest lagoon edge.

Behavioral Assessment of Visual Navigation
Experiments were conducted on wild populations of
T. cystophora medusae in the mangrove lagoons near La
Parguera, Puerto Rico. Preliminary tests demonstrated that if
jellyfish were displaced about 5 m from their habitat at the
lagoon edge, they rapidly swam back to the nearest edge,
independent of compass orientation. To make controlled
experiments, we introduced a clear experimental tank consist-
ing of a cylindrical wall and a flat bottom, open upward, to the
natural habitat under the mangrove canopy. When the tank
was filled with water, it was lightly buoyant such that the walls
extended 1–2 cm above the external water surface, effectively
sealing off the water around the animals but without affecting
the visual surroundings. A group of medusae was released
in the tank, and as long as the tank remained under the canopy,
the medusae showed no directional preference but occasion-
ally bumped into the tank wall. The tank, with the trapped
water andmedusae, was then slowly towed out into the lagoon
from the original position under themangrove canopy. In steps
of 2–4 m, starting at the canopy edge, the positions of the
medusae within the tank were recorded by a video camera
suspended under the tank. At all positions, from the canopy
edge and outward, the medusae ceased feeding and swam
along the edges of the tank, constantly bumping into it, sug-
gesting that they responded to the displacement (Figure 3).
Most importantly, their mean swimming direction differed
significantly from random and coincided with the direction
toward the nearest mangrove trees (Table S1). This behavior
was indicated already at the canopy edge but was strongest
when the tank was placed 2 or 4 m into the lagoon (Figure 3).
At 8 m from the canopy edge, the medusae could still detect

Figure 1. Rhopalial Orientation and Visual Field
of the Upper Lens Eye

(A andB) In freely swimmingmedusae, the rhopa-
lia maintain a constant vertical orientation. When
the medusa changes its body orientation, the
heavy crystal (statolith) in the distal end of the
rhopalium causes the rhopalial stalk to bend
such that the rhopalium remains vertically
oriented. Thus, the upper lens eye (ULE) points
straight upward at all times, irrespective of
body orientation. The rhopalia in focus are situ-
ated on the far side of the medusa and have the
eyes directed to the center of the animal.
(C) Modeling the receptive fields of the most
peripheral photoreceptors in the ULE (the relative
angular sensitivity of all peripheral rim photore-
ceptors are superimposed and normalized ac-
cording to the color template). The demarcated
field of view reveals a near-perfect match to the
size and orientation of Snell’s window (dashed
line).
(D) The visual field of the ULE, of just below 100!,
implies that it monitors the full 180! terrestrial
scene, refracted through Snell’s window. LLE
denotes lower lens eye. Scale bars represent
5 mm in (A) and (B) and 500 mm in insets.
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Separation of shape and reflectance

offers a complete description.)
Luminance, illuminance, and reflectance, are physical

quantities that can be measured by physical devices. There
are also two subjective variables that must be discussed.

Lightness is defined as the perceived reflectance of a sur-
face. It represents the visual system’s attempt to extract
reflectance based on the luminances in the scene. 

Brightness is defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene. Brightness is sometimes defined as per-
ceived luminance. 

These terms may be understood by reference to figure 24.7.
The block is made of a 2x2 set of cubes, each colored either
light or dark gray. We call this the “checker- b l o c k . ”
Illumination comes from an oblique angle, lighting different
faces differently. The luminance image can be considered to
be the product of two other images: the reflectance image
and the illuminance image, shown below. These underlying
images are termed intrinsic images in machine vision
(Barrow and Tenenbaum, 1978). Intrinsic image decomposi-
tions have been proposed for understanding lightness per-
ception (Arend, 1994; Adelson and Pentland, 1996)

Patches p and q have the same reflectance, but different
luminances. Patches q and r have different reflectances and
d i fferent luminances; they share the same illuminance.
Patches p and r happen to have the same luminance, because
the lower reflectance of p is counterbalanced by its higher

illuminance. 
Faces p and q appear to be painted with the same gray,

and thus they have the same lightness. However, it is clear
that p has more luminance than q in the image, and so the
patches differ in brightness. Patches p and r differ in both
lightness and brightness.

The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the
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FIGURE 24.6  Variants on the Koffka ring. (a) The ring appears about
uniform. (b) When split, the two half-rings appear distinctly differ-
ent. (c) When shifted, the two half-rings appear quite different. FIGURE 24.7  The “checker-block” and its analysis into two intrinsic

images.

L(x,y) = E(x,y)R(x,y).
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reflectance shading (Adelson, 2000)



1. Sparse coding

2. Separating form and motion 
from time-varying images

Possible neural circuits for inferential 
computation in V1
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(Olshausen & Field, 1996;
Chen, Donoho & Saunders 1995)
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Energy function

preserve information be sparse



Energy function

preserve information be sparse
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Coefficients ai may be computed via 
thresholding and lateral inhibition

(‘LCA’ - Rozell, Johnson, Baraniuk & Olshausen, 2008)

Gij =
X

x

�i(x)�j(x)

bi =
X

x

�i(x) I(x)
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1. Sparse coding

2. Separating form and motion 
from time-varying images

Two examples



Visual perception requires separation of form 
and motion from time-varying retinal images

(eye movement data from Austin Roorda, UC Berkeley)



Simple averaging is not sufficient



The problem

I(~x, t) = S(~x��~x(t)) + ✏(~x, t)

�̂~x(t) = arg min
�~x(t)

|I(~x, t)� S(~x��~x(t))|2

Ŝ(~x) =

Z
I(~x+�~x(t)) dt



Traditional models compute motion and form independently

time-varying image

feature extraction
and pooling

motion energy
and pooling

invariant pattern
recognition

optic flow



Traditional models compute motion and form independently

time-varying image

feature extraction
and pooling

motion energy
and pooling

invariant pattern
recognition

optic flow



estimate pattern

estimate motion motion

pattern

time-varying image estimate motion optic flow
regularization 
(smoothness)

natural scene 
statistics prior

natural scene 
statistics prior

time-varying image

a)

b)

form form

Motion and form must be estimated
simultaneously



X0 X1 X2

R0 R1 R2

S

Graphical model for separating form and motion
(Alex Anderson, Ph.D. thesis)

Eye position

Spikes
(from LGN afferents)

Pattern

ˆS = argmax

S
logP (R|S)



Retina

Internal	Form	Estimate	(S)

Internal	Position	
Estimate	(X)

Given current estimate of position (X), update S 



P(Xt|R0:t)

P(Xt+1|R0:t)

P(Xt+1|R0:t+1)

Rt+1

P(Rt+1|Xt+1,S	=	St)	

S	=	St

Given current estimate of form (S), update X 



Joint estimation of form (S) and position (X)



Including a prior over form (S)

Eye position

Spikes
(from LGN afferents)

Pattern

X0 X1 X2

R0 R1 R2

S

A

D

Sparse representation
Dictionary

ˆA = argmax

A
logP (R|A) + logP (A)

sparse



Learned dictionary D



Prior over form (S) improves inference 



Form prior improves inference 



• Perception seems better described as an 
inference problem that attempts to disentangle 
underlying causes from image data.

• Inference involves bidirectional information flow 
both within and between levels of representation.

• This moves us away from thinking of ‘receptive 
fields’ and instead toward how populations of 
neurons interact to perform collective 
computations.

Main points
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