Perception as an Inference Problem

Bruno A. Olshausen

Helen Wills Neuroscience Institute, School of Optometry and Redwood Center for Theoretical Neuroscience UC Berkeley

What are the principles governing information processing in this system?

'Gabor filters'

•

٠

· objects · faces

Two views of visual system function

• Deduction

- feature extraction, classification
- (Hubel & Wiesel; Fukushima; 'deep learning')

• Inference

- generative models, recurrent computation
- (Helmholtz; Nakayama; Kersten & Yuille; Geman; Lee & Mumford)

Hubel & Wiesel (1962, 1965)

Is this the goal of vision?

jumping spider

sand wasp

box jellyfish

Vision as inference

Separation of shape and reflectance

Possible neural circuits for inferential computation in V1

- 1. Sparse coding
- 2. Separating form and motion from time-varying images

Sparse coding image model

(Olshausen & Field, 1996; Chen, Donoho & Saunders 1995)

Energy function

Energy function

$$E = \frac{1}{2} |\mathbf{I} - \Phi \mathbf{a}|^2 + \lambda \sum_{i} C(a_i)$$

-log P(I | a) P(a)

Coefficients *a_i* may be computed via thresholding and lateral inhibition ('LCA' - Rozell, Johnson, Baraniuk & Olshausen, 2008)

I.25x

2.5x

Two examples

- 1. Sparse coding
- 2. Separating form and motion from time-varying images

Visual perception requires separation of form and motion from time-varying retinal images

(eye movement data from Austin Roorda, UC Berkeley)

Simple averaging is not sufficient

The problem

$$I(\vec{x},t) = S(\vec{x} - \Delta \vec{x}(t)) + \epsilon(\vec{x},t)$$

Traditional models compute motion and form independently

Traditional models compute motion and form independently

Motion and form must be estimated simultaneously

Graphical model for separating form and motion

(Alex Anderson, Ph.D. thesis)

Eye position

Spikes (from LGN afferents)

Pattern

$$\hat{S} = \arg\max_{S} \log P(R|S)$$

Given current estimate of position (X), update S

Given current estimate of form (S), update X

Joint estimation of form (S) and position (X)

EM Reconstruction after t = 5.00 ms for DC gen = 100.00, LAMBDA = 0.00

Including a prior over form (S)

Eye position

Spikes (from LGN afferents)

Pattern

Dictionary Sparse representation

 $\hat{A} = \arg \max_{A} \log P(R|A) + \log P(A)$ **sparse**

Learned dictionary D

Prior over form (S) improves inference

EM Reconstruction after t = 5.00 ms for DC_gen = 100.00, LAMBDA = 1.00

Form prior improves inference

Main points

- Perception seems better described as an inference problem that attempts to disentangle underlying causes from image data.
- Inference involves bidirectional information flow both within and between levels of representation.
- This moves us away from thinking of 'receptive fields' and instead toward how populations of neurons interact to perform collective computations.

Papers

Olshausen BA (2014) Perception as an Inference Problem. In: *The Cognitive Neurosciences V.* M. Gazzaniga, R. Mangun, Eds. MIT Press. <u>http://redwood.berkeley.edu/bruno/papers/perception-as-inference.pdf</u>

Rozell CJ, Johnson DH, Baraniuk RG, Olshausen BA (2008). Sparse Coding via Thresholding and Local Competition in Neural Circuits. *Neural Computation*, 20, 2526-2563.

http://redwood.berkeley.edu/bruno/papers/rozell-sparse-coding-nc08.pdf

Olshausen BA (2013) Highly overcomplete sparse coding. In: SPIE Proceedings vol. 8651: Human Vision and Electronic Imaging XVIII, (B.E. Rogowitz, T.N. Pappas, H. de Ridder, Eds.), Feb. 4-7, 2013, San Francisco, California.

http://redwood.berkeley.edu/bruno/papers/highly-overcomplete-SPIE.pdf