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Figure 1: Ground-truth segmentations provided by different annotators for
an image from the BSD dataset, and associated boundary maps. The evident
lack of agreement among humans is reflected in a low F-measure of human
annotators on the task, F = 0.803. Our system delivers F = 0.813.

Method Baseline MIL G-DSN M-Scale VOC Grouping
ODS 0.778 0.786 0.789 0.803 0.809 0.813
OIS 0.796 0.808 0.811 0.820 0.827 0.831
AP 0.804 0.802 0.789 0.848 0.861 0.866

Table 1: Improvements obtained in this work over our own reproduction of
a HED-type baseline; each column builds on the previous improvements.

Image segmentation is an ill-posed problem, since multiple solutions can be
considered plausible depending on the task at hand. This is reflected in the
inconsistency of human segmentations, illustrated in Fig. 1. When evaluated
on the test set of Berkeley Segmentation Dataset (BSD) humans have an F-
measure of 0.803 Arbelaez et al. [1], indicating the task’s difficulty.

Progress in boundary detection has been consistently narrowing the gap
between human and machine performance. The Holistic Edge Detection ap-
proach of Xie and Tu [9] dramatically improved the F-measure of boundary
detection from 0.75 to 0.78, while requiring only 0.4 seconds on the GPU;
additional dataset augmentation yielded an F-measure of 0.79.

Our system, originally introduced in [6] is the first to yield an F-measure
on the BSD dataset that is higher than that of humans: when using a common
threshold for the whole dataset (Optimal Dataset Scale -ODS) our system’s
F-measure equals F = 0.813, while when an oracle sets the threshold per
image (Optimal Image Scale -OIS) we obtain F = 0.831. Our detector is
fully integrated in Caffe and processes a 321x481 image in less than a sec-
ond. A preliminary version of our boundary detection system has been made
publicly available from the author’s website.

Our starting point is the ‘Holistic Edge Detection’ (HED) work of Xie
and Tu [9], which uses ‘Deep Supervised Network’ (DSN) [7] training to
fine-tune the VGG network for the task of boundary detection. Using the
notation of [9], we have a training set S = (Xn,Yn),n = 1, . . . ,N with Xn

being the input image and Yn = {y(n)j , j = 1, . . . , |Xn|},y
(n)
j ∈ {0,1} being

the predicted labels. We drop the n subscript for brevity.
We consider a multi-layer network, represented in terms of the union of

its individual layer parameters, W, to which we append a set of per-layer
‘side’ parameters w(1), . . .w(5), treating the first five convolutional layers of
VGG, and fusion weights h. The training objective of HED is:

LHED(W,w,h) = Lside(W,w)+L f use(W,w,h), where (1)

Lside(W,w)=
M

∑
m=1

∑
j∈Y

wŷ j S(ŷ j,sm
j ), L f use(W,w,h)= ∑

j∈Y
wŷ j S(ŷ j,

M

∑
m=1

hmsm
j ).

In the expressions above j ranges over the image domain, y j is the ground-
truth label, wŷ j is a class-dependent weight and S is the cross-entropy loss.
The side layers provide M = 5 complementary estimates for the presence of
the boundary s1

j , . . . ,s
m
j , computed as inner products between neuron acti-

vations and discriminatively trained weights, Wm; the fusion layer learns to
combine these estimates into a global decision ∑

M
m=1 hmsm

j .
Having outlined the HED framework, we now turn to our contribu-

tions, consisting in (i) Multiple Instance Learning for boundary detection (ii)
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Figure 2: Overview of the main computation stages in our system: an input
image is processed at three different scales in order to obtain multi-scale in-
formation. The the three scales are fused and sent as input to the Normalized
Cuts algorithm, that delivers eigenvectors (we show the first three of eight
dimensions as an RGB image) and the resulting ‘Spectral Boundaries’. The
latter are fused with the original boundary map, nonmaximum suppressed,
and optionally thresholded (bottom row). All stages are implemented in
Caffe, requiring less than a second on an Nvidia Titan GPU.

Graduated Deep Supervision (iii) Multi-Scale training, (iv) introducing ex-
ternal data, (v) combining CNNs with Normalized Cuts. The improvements
due to these contributions are summarized in Table 1, where we report our
ODS- and OIS-based F-measures on the BSD test set, alongside with the
average precision (AP). We compare to our home-trained HED baseline that
yields a performance just slightly below that of [9].

Dealing with annotation inconsistencies using MIL: The first of our con-
tributions aims at dealing with the inconsistency of human annotations in
the BSD, illustrated in Fig. 3. As can be seen, even if the two annotators
agree about the semantics (a tiger in water), they may not place the bound-
aries at a common location. This makes it challenging to define ‘positive’
and ‘negative’ training samples in the vincinity of boundaries.

We therefore adopt a Mutliple Instance Learning (MIL) approach, as in
[5], and associate every ground-truth boundary position j with a set of N j
positions and an associated feature ‘bag’, X j = {X j,1, . . . ,X j,N j}. These po-
sitions are estimated by identifying the image positions that (i) lie closer to
i than any other ground-truth pixel and (ii) have a distance below a thresh-
old d. As before, for each feature X j of the i-th bag our classifier provides a
score s j, but now the decision is taken by maximizing over the evidence pro-
vided by the instances belonging to a bag. Our cost function thus becomes:

lm(W,w(m)) = ∑
j∈Y−

wŷ j S(−1,sm
j )+ ∑

j∈Y+
wŷ j S(1,max

j∈Bi
sm

j ) (2)

where Bi is the ‘bag’ of pixel indices associated with sample i; this allows
positive samples to select the neighbours that most support them while forc-
ing all negatives to be negative. Even though the max operation is not dif-
ferentiable, we can compute a subgradient and use it for backpropagation.
Graduated DSN Training: The side-layer terms in the objective function

Figure 3: Location uncertainty of human annotations in the BSD dataset:
even if annotators agree on the semantics, their boundaries may not coincide.
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Figure 4: Network architecture used for multi-resolution HED training: as
in HED, every intermediate layer of a DCNN (shown in blue) is processed
by a side layer (shown in orange) which is penalized by a loss function L.
The intermediate results are combined in a late fusion stage, which is again
trained with the same loss function. In our architecture three differently
scaled versions of the input image are provided as inputs to three FCNN
networks that share weights - their multi-resolution outputs are fused in a
late fusion stage, extending DSN to multi-resolution training.

of HED, Eq. 1 can be understood as steering the optimization problem to
a good solution, forcing not only the final output, but also the intermediate
layers to be discriminative. But once the network parameters are in the right
regime, we can discard any guidance that was required to get us there. This
is a strategy used in the classical Graduated Non-Convexity algorithm [2],
and here we show that it also helps improve DSN when applied to boundary
detection. For this we modify the HED objective, associating the side term
with a decreasing weight while fixing the fusion term’s weight:

L(t)(W,w,h) = (1− t
T
)Lside(W,w)+L f use(W,w,h),

where t is the current training epoch and T is the total number of epochs.
Our ’Graduated-DSN’ training criterion starts from DSN, where every in-
termediate layer is trained for classification, and eventually leads to a skip-
layer architecture, where the early layers are handled exclusively by the final
fusion criterion. By the end the fusion-layer can manipulate the side-layers
at will. The improvements are reported in the G-DSN column of Table 1.

Multi-Resolution Architecture: As shown in Fig. 4, we fuse boundary
information coming from multiple scales through a multi-resolution archi-
tecture with tied weights, meaning that layers that operate at different reso-
lutions share weights with each other. Parameter sharing across layers both
accelerates convergence and also avoids over-fitting. In order to capture
fine-level boundaries the top-resolution image is an upsampled version of
the original. The multi-resolution results are combined through an addi-
tional fusion layer that combines the fused results of the individual resolu-
tions. The improvements are reported in the ‘M-Scale’ column of Table 1.

Training with external data: We use boundaries from the VOC Context
dataset [8], where all objects and ‘stuff’ present in the scene are manually
segmented. Our sole modification to those boundaries has been to label the
interiors of houses as ‘don’t care’ regions that are ignored by the loss, since
all of the window, or door boundaries are missed by the annotators. We flip
these images, resulting in roughly 20000 images, which are appended to the
original dataset. The ‘VOC’ column of Table 1 indicates the improvement.

Using grouping in a deep architecture: We ‘globalize’ our bottom-up con-
tour detection results through the Normalized Cut technique [1]; the direc-
tional derivatives of the resulting eigenvectors can be used for boundary
detection, known as the ‘spectral probability of boundary’ cue [1]. One of
the main impediments to the application of this technique has been compu-
tation time. For this we integrate the GPU-based Damascene system of [3]
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Figure 5: Impact of the different improvements described in Section 2:
starting from a baseline that performs only slightly worse than the HED
system of [9] we end up with a detector that largely surpasses human F-
measure, illustrated in terms of green isocontours. On the right we zoom
into the high-F measure regime.

Method ODS OIS AP
gPb-owt-ucm [1] 0.726 0.757 0.696
SE-Var [4] 0.746 0.767 0.803
HED-fusion [9] 0.790 0.808 0.811
HED-late merging [9] 0.788 0.808 0.840
Ours (DCNN + sPb) 0.8134 0.8308 0.866

Figure 6: Comparison to the state-of-the-art in boundary detection, includ-
ing the latest version of HED, trained with its most recent dataset augmen-
tation [9]. We clearly outperform HED across all performance measures,
while maintaining the computational speed above 1 frame per second.

with the Caffe deep learning framework; when integrated with our boundary
detector Damascene yields 8 eigenvectors for a 577×865 image in less that
0.2 seconds. This further improves the performance of our detector, yielding
an F-measure of 0.813, which is substantially better than our earlier perfor-
mance of 0.809, and humans, who operate at 0.803.

Summary: We summarize the impact of the different steps described above
in Fig. 5 - starting from a baseline that performs slightly worse than the
HED system of Xie and Tu [9] we have introduced a series of changes that
resulted in a system that performs boundary detection with an F-measure
that exceeds that of humans. Our method outperforms the current state-of-
the-art method of Xie and Tu [9] in terms of all typical performance mea-
sures, as shown in Table 6. A preliminary version of this boundary detector
is available from our website; the full code will soon be released.
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