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We build a system for simultaneous image segmentation and figure/ground
organization by directly connecting a convolutional neural network (CNN)
to a spectral embedding algorithm which produces a globally consistent
scene interpretation. Training the CNN with a target appropriate for this
inference procedure eliminates the need for the hand-designed intermediate
stages, such as edge detection, typical of perceptual organization pipelines.

Angular Embedding (AE) [9] serves as our globalization framework.
Previous work [5] establishes AE as a basis for joint segmentation and fig-
ure/ground organization. We follow in spirit, but employ major changes in
order to achieve results of the high quality shown in Figure 1:

• We reformulate segmentation and figure/ground layering in terms of
an energy model with pairwise forces between pixels. Pixels either
bind together (group) or differentially repel (layer separation), with
strength of interaction modulated by confidence in the prediction.

• We learn a CNN that predicts these interactions across multiple dis-
tance scales and use an efficient solver [6] for spectral embedding.

Figure 2 details our architecture for connecting a CNN with AE.
To arrive at this design, we first abstract the figure/ground problem to

that of assigning each pixel p a rank θ(p), such that θ(·) orders pixels by
occlusion layer. Now assume we can obtain estimates of the relative order
Θ(p,q) between many pairs of pixels p and q. The task is then to find θ(·)
that agrees as best as possible with these pairwise estimates. AE addresses
this optimization problem by minimizing error:

ε = ∑
p

∑q C(p,q)

∑p,q C(p,q)
· |z(p)− z̃(p)|2 (1)

where C(p,q) accounts for possibly differing confidences in the pairwise
estimates and θ(p) is replaced by z(p) = eiθ(p). As Figure 3 shows, this
permits interpretation of z(·) as an embedding into the complex plane, with
desired ordering θ(·) corresponding to absolute angle. z̃(p) is defined as the
consensus embedding location for p according to its neighbors and Θ:

z̃(p) = ∑
q

C̃(p,q) · eiΘ(p,q) · z(q) (2)

C̃(p,q) =
C(p,q)

∑q C(p,q)
(3)

Relaxing the unit norm constraint on z(·) yields a generalized eigenproblem:

Wz = λDz (4)

Figure 2: Architecture.
A trained CNN predicts
grouping and ordering rela-
tions between each of the n
image pixels and its neigh-
bors at k displacements
across a fixed stencil pat-
tern. We assemble these
n×2k pixel-centric relations
into a sparse n×n complex
affinity matrix. We feed the
pairwise affinity matrix into Angular Embedding [9] for global integra-
tion, producing an eigenvector representation that reveals segmentation and
figure-ground organization: we know not only which pixels go together, but
also which pixels go in front.

with D = Diag(C1n) and W =C • eiΘ, where • denotes Hadamard product.
For Θ everywhere zero (W = C), this eigenproblem is identical to the

spectral relaxation of Normalized Cuts [8], in which the second and higher
eigenvectors encode grouping [1, 8]. With nonzero entries in Θ, the first
of the now complex-valued eigenvectors is nontrivial and its angle encodes
rank ordering while the subsequent eigenvectors still encode grouping [5].
We use the same decoding procedure as [5] to read off this information. We
also recover boundaries and segmentation from the embedding by taking the
(spatial) gradient of eigenvectors and applying the watershed transform.

It remains to define the pairwise pixel relationships C(p,q) and Θ(p,q).
Figure 4 illustrates possible transitions between p and q. Selecting the most
likely, the probabilities of erroneously binding p and q into the same region,
transitioning to figure, or transitioning to ground are:

EB(p,q) = b(p,q) (5)

EF (p,q) = 1− (1− e(p))b(p,q)(1− e(q)) f (p,q) (6)

EG(p,q) = 1− (1− e(p))b(p,q)(1− e(q))g(p,q) (7)

where e(p) and b(p,q) denote the probability of an edge at p and a bound-
ary somewhere between p and q, respectively. f (p,q) and g(p,q) are con-
ditional probabilities of relative figure and ground, given that p and q are in
separate regions. Note g(p,q) = 1− f (p,q). Figure/ground repulsion forces
act long-range and across boundaries. We convert to confidence via expo-
nential reweighting (σb and σ f = σg control scaling), and apply a rotational
action by fixed angle φ for figure/ground transitions, obtaining affinities:
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Figure 1: Segmentation and figure/ground results. Left: While both utilize spectral embedding, our improved energy model and CNN-based predictors
yield significant performance gains over the prior work of Maire [5]. Spectral F/G shows predicted per-pixel figure/ground ordering. Compare the strong
lower-region bias for figure of [5] to our correct extraction of foreground objects. Spectral edges show soft boundary strength encoded by the embedding.
These boundaries generate a hierarchical segmentation [1], one level of which we display with per-pixel figure/ground averaged over regions. Right:
Averaging instead over ground-truth regions, we can project a predicted figure/ground ordering onto the ground-truth segmentation. For boundaries
separating regions with different ground-truth figure/ground layer assignments, we check whether the predicted owner (more figural region) matches the
owner according to the ground-truth. The rightmost two columns mark correct boundary ownership predictions in green and errors in red.
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Figure 3: Angular Embedding [9]. Given (C,Θ) capturing pairwise re-
lationships between nodes, the Angular Embedding task is to map those
nodes onto the unit semicircle, such that their resulting absolute positions
respect confidence-weighted relative pairwise ordering (Equation 1). Rela-
tive ordering is identified with rotation in the complex plane. For node p,
θ(p) = arg(z(p)) recovers its global rank order from its embedding z(p).

WB(p,q) = exp(−EB(p,q)/σb) (8)

WF (p,q) = exp(−EF (p,q)/σ f )exp(iφ) (9)

WG(p,q) = exp(−EG(p,q)/σg)exp(−iφ) (10)

Combining these base cases into a single energy model yields affinity:

W (p,q) =WB(p,q)+WF (p,q)+WG(p,q) (11)

One can regard W (p,q) as a sum of binding, figure transition, and ground
transition forces acting between p and q. Learning to predict e(p), b(p,q),
and f (p,q) suffices to determine all components of W . For computational
efficiency, we predict pairwise relationships between each pixel and its im-
mediate neighbors across multiple spatial scales. As an adjustment prior to
feeding W to the Angular Embedding solver of [6], we enforce Hermitian
symmetry by assigning: W ← (W +W ∗)/2.

Supervised training of our system proceeds from a collection of images
and associated ground-truth, {(I0,S0,R0),(I1,S1,R1), . . .}. Here, Ik is an im-
age defined on domain Ωk ⊂ N2. Sk : Ωk → N is a segmentation mapping
each pixel to a region id, and Rk : Ωk → R is an rank ordering of pixels ac-
cording to figure/ground layering. This data defines pairwise relationships:

b̃k(p,q) = 1−δ (S(p)−S(q)) (12)

f̃k(p,q) = (sign(R(q)−R(p))+1)/2 (13)

As f (p,q) is a conditional probability, we only generate training examples
f̃k(p,q) for pairs (p,q) satisfying b̃k(p,q) = 1. We compute e(·) from b(·, ·).
Figure 5 illustrates derivation of training signals from the annotation avail-
able on the Berkeley segmentation dataset (BSDS) [7].

Choosing a CNN to implement these predictors, we regard the problem
as mapping an input image to a 48 channel output over the same domain.
The 48 channels are predictors for b(·, ·) and f (·, ·) at each of 24 offsets (8
immediate neighbors across 3 scales). We use an AlexNet [4]-inspired de-
sign, augmented to include both coarse and fine receptive fields [2], and
train with log loss between truth and prediction applied to each output
pixel-wise. As only 200 BSDS images are annotated with ground-truth fig-
ure/ground [3], we use 150 for training and 50 for testing.

Figure 1 shows results on some examples from our 50 image test set.
Compared to the previous attempt [5] to use Angular Embedding as an in-
ference engine for figure/ground, our results are strikingly better; improve-
ment is visually apparent on every example. Quantitative evaluation corrob-
orates this view. Benchmarking boundary ownership prediction, our system
achieves 69% accuracy compared to 58% for [5].

Though trained only on the BSDS, our system generalizes well to other
datasets. It captures layering that respects scene structure and, while having
only been tuned for perceptual organization, often behaves like an object de-
tector by popping out coherent foreground regions. Please see the full paper
for these additional results.

Our work demonstrates that Angular Embedding, acting on CNN pre-
dictions about pairwise pixel relationships, provides a powerful framework
for segmentation and figure/ground organization. It is the first system to
formulate a robust interface between these two components. Our results
are a dramatic improvement over prior attempts to use spectral methods for
figure/ground organization.
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Figure 4: Complex affinities for grouping and figure/ground. Four ba-
sic interaction types span the space of possible pairwise pixel relationships:
contiguous region, ambiguous boundary, figure → ground, and ground →
figure transitions. Left: Each is captured by a single complex number, with
confidence as magnitude and relative figure/ground displacement as angle
from the positive real axis. Right: Combining these base cases, we express
generalized affinity W as the sum of a binding force acting along the posi-
tive real axis, and figure and ground displacement forces acting at angles. W
varies smoothly across its configuration space, yet exhibits distinct modes.
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Figure 5: Affinity learning. Left: Given only ground-truth segmenta-
tion [7] and local boundary ownership [3], we infer a global ground-truth
figure/ground order by running Angular Embedding with pairwise inter-
actions defined by the local ownership. Right: Ground-truth segmenta-
tion serves to train pairwise grouping probability b(·, ·), while globalized
ground-truth figure/ground trains f (·, ·). Shown are training targets b̃, f̃ ,
and model predictions b, f , for one stencil component: the relationship be-
tween pixel p and its neighbor at relative offset d = (−16,0). Ground-truth
b̃ is binary (blue=0, red=1). f̃ is also binary, except pixel pairs in the same
region (shown green) are ignored. As f is masked by b at test time, we
require only that f (p,q) be correct when b(p,q) is close to 1.
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