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Abstract

We propose a semi-automatic method to obtain foreground object masks for
a large set of related images. We develop a stagewise active approach to
propagation: in each stage, we actively determine the images that appear
most valuable for human annotation, then revise the foreground estimates
in all unlabeled images accordingly. In order to identify images that, once
annotated, will propagate well to other examples, we introduce an active
selection procedure that operates on the joint segmentation graph over all
images. It prioritizes human intervention for those images that are uncer-
tain and influential in the graph, while also mutually diverse. We apply our
method to obtain foreground masks for over 1 million images. Our method
yields state-of-the-art accuracy on the ImageNet and MIT Object Discov-
ery datasets, and it focuses human attention more effectively than existing
propagation strategies.1

1 Introduction
Large-scale labeled image datasets have had a transformative impact on
computer vision in recent years, most notably for image classification. How-
ever, image annotation remains a costly undertaking in terms of both time
and money. In particular, gathering high quality spatial annotations—pixel-
level foreground masks—is extremely challenging and expensive. The dif-
ficulty in generating foreground spatial annotations for image collections is
problematic given their high potential utility e.g. for training region based
object detectors, image retrieval, data driven image synthesis etc.

An attractive alternative with low manual effort is to take a pool of im-
ages known to contain the same object category (weak supervision), and
exploit the repeated patterns to jointly segment out the foreground per im-
age. Such collections can be easily downloaded from web, however using
this weak supervision alone still results in largely imperfect segmentations.

In this work, we propose an intermediate solution. Rather than rely
solely on human-provided segmentations (accurate but too expensive) or
automatic segmentations (inexpensive but too inaccurate), we develop a
semi-automatic segmentation propagation approach. The idea is to actively
request human annotations for select images that, once labeled with their
foreground, are most expected to help co-segment the remaining unlabeled
images. The propagation engine proceeds in stages, each time (1) using
the recently annotated images to revise foreground estimates in all unla-
beled images, and (2) using those results to determine the next best batch
of images to present to human annotators. In this way, we neither restrict
ourselves to the saturation point of the fully automatic methods, nor do we
get large volumes of data labeled by humans (see Figure 1).

To achieve this goal, we develop an active selection approach tailored
to foreground propagation. It operates on a graph constructed over all im-
ages in the collection. Our active selection process favors choosing images
that are uncertain—poorly explained by any images labeled so far, as well
as influential—similar to many unlabeled images, making their foreground
mask transferrable—and mutually diverse—so as to avoid redundant human
effort. A critical part of our method design is its stagewise propagation,
which permits both human-annotated and automatically annotated images
to influence the system’s view of what most needs human attention next.

Our framework differs in important ways from existing work on both
active learning and segmentation propagation. Active learning methods for
recognition aim to train a model that will make accurate category label pre-
dictions on unseen test images (e.g., [13, 15, 16]). In contrast, our goal is
to get all available images spatially annotated by semi-automatic propaga-
tion (i.e., ours is a transductive setting). There is very limited prior work
on segmentation propagation, and existing methods are either passive [5] or
only select annotations to initialize the algorithm [11]. A key insight of our

1This abstract summarizes our CVPR 2016 paper [6].

Figure 1: Our active image segmentation propagation method alternates between: (1) Actively
choosing images which once annotated by humans will likely be most useful in propagating seg-
mentations to other images and (2) Given human annotations on actively chosen images (marked
in pink), propagating them (dark arrows) to generate segmentations for other unlabeled images.

technical approach is to repeatedly analyze the current segmentations to ac-
tively decide on subsequent annotations. Applying our method to more than
1 million images, we show that intelligently focusing human effort leads to
significantly better foreground extraction.

2 Approach
Given a collection of weakly supervised images (denoted by I), all of which
contain instances of the same object category, our goal is to jointly segment
these images, yielding a foreground object mask for each one. Our proposed
approach iterates between the two main components: 1) A joint segmenta-
tion procedure to simultaneously solve for all foreground masks, given fore-
ground annotations on only a subset of the images (see Sec. 2.1). 2) An
active procedure for identifying the set of images that should be annotated
next by human annotators (see Sec. 2.2).

2.1 Semi-automatic joint foreground segmentation
We define a Markov Random Field (MRF) joint segmentation graph G =
(R,E) over region proposals extracted from all images in the collection.
Here, R = {Ri j} denotes the set of all region proposals in all N images,
where Ri j denotes the j-th region for image Ii ∈ I. Each region Ri j ∈ R
forms a node and the edges E connect pairs of similar regions. The goal of
our joint segmentation procedure is to identify the subset of region proposals
that are good, and fuse them to obtain the final segmentation. Let S ⊆
I denote the current subset of images labeled with foreground masks by
human annotators. (We explain in Sec. 2.2 how the composition of this set
is iteratively and actively defined.)

The unary terms in our proposed joint segmentation graph prefers to
label as foreground those regions that are (1) higly salient and/or (2) form
a good match with some human labeled foreground masks (S). The pair-
wise terms encourages similar-looking regions to take the same label and
enforces consistency in our joint selection of good region proposals.

The minimum energy solution to this MRF yields a set of good region
proposals for each image in the collection. Note that we do not constrain
only one proposal to be selected per image. We purposely allow selecting
multiple good regions per image, for two reasons. First, an image can nat-
urally have multiple good region proposals (e.g. covering different object
parts). Second, it allows us to efficiently and exactly minimize our energy
function using graph-cuts [2]. Finally, our fusion step combines these mul-
tiple partial good proposals in each image to a single accurate segmentation.

2.2 Active selection for propagation

We now describe our stagewise algorithm to actively select images for anno-
tation. The active selection procedure takes as input the image collection I,
an annotation budget k specifying the number of images to get labeled per
stage, and the number of total annotation stages T . In each stage t, we solicit
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Figure 2: Active propagation for varying amounts of human annotation on a subset of the 3,624 ImageNet total synsets and MIT dataset. We show bounding-box localization (BBox-CorLoc)
accuracy for ImageNet dataset and segmentation localization (Seg-CorLoc) accuracy for MIT dataset (see [6] for additional results).

annotations for the actively chosen batch St , augment S with that newly la-
beled data, and propagate the segmentation as described above. The output
after T rounds is the resulting propagated masks on all images. Note that
throughout the stages, each unlabeled mask is continually refined, and its
intermediate results affect subsequent stages’ active selections.

Our active selection algorithm accounts for three criteria—influence,
diversity, and uncertainty. The former two criteria account for relationships
between images that are relevant to propagation, while the latter accounts
for the inherent difficulty of individual images. An image influential for
propagation is similar to many other images in the collection. Intuitively,
labeling such a “hub" image can directly improve the mask quality of the
related images, particularly given our match-based unaries and localized
image neighborhoods. A batch of images that are diverse ensures broad
coverage over the entire collection. Selecting images which are influential
but also very similar would not lead to a large information gain. Hence, we
enforce diversity by adding a penalty for selecting mutually similar images.
An image that is uncertain—inherently difficult to segment automatically—
is also a good candidate for human supervision. We quantify the uncertainty
of an image by predicting if its badly segmented using a learned regressor
over descriptors suggestive of segmentation quality on an external dataset.

At each stage, we would like to identify the set maximizing all three
criteria simultaneously. This is a combinatorial problem over all subsets
St ⊆ I and impractical to solve optimally. We instead employ a greedy
approach similar to the maximization of monotone submodular functions to
approximately solve this optimization problem.

3 Results
Datasets: We evaluate our approach on ImageNet [12] (∼1M images, 3,624
classes) and the MIT Object Discovery [10] (2488 images, 3 classes) dataset.
Baselines: Apart from an ablated version of our method (i.e., w/o uncer-
tainty), we compare with these baselines:
- Passive: At every stage, randomly pick k images to be labeled by humans.
- PageRank [11]: Only existing active propagation method, uses PageRank
importance ranking and clustering to pick k good images at each stage.
- Semantic Propagation [5]: An existing propagation method that pro-
motes propagation between semantically related classes.
- Weakly supervised: We also compare the special case of our method (no
human annotation) with several existing approaches [3, 7, 8, 9, 10, 14].
Evaluation metrics: We use: (1) Jaccard Score: Standard intersection-
over-union (IoU) metric between predicted and ground truth segmentation
masks (for MIT) and between bounding boxes (for ImageNet), and (2) Cor-
Loc Score: Percentage of images correctly localized according to PASCAL
criterion (i.e IoU > 0.5) used in [4, 14]. For MIT we use the segmenta-
tion masks (Seg-CorLoc) and for ImageNet we use bounding boxes (BBox-
CorLoc) since it lacks ground truth masks.

3.1 Active segmentation propagation
First we present results for active selection. In this setting we iteratively
request annotators to provide true segmentations for a subset of images. We
then use these labeled images to improve the joint segmentation of other
unlabeled images in the collection.

Figures 2 shows sample results on both ImageNet and MIT datasets. On
the extreme left on x-axis, we have the performance of the purely weakly
supervised setting (no human input) and on the extreme right, annotators
provide ground-truth segmentations for all images in the collection. In be-
tween we see the trade-off between actively allocating human effort versus

other baselines. For all metrics and datasets, the proposed approach outper-
forms all baselines. While all methods naturally improve with more labeled
data, the slope of our improvement curve is substantially sharper using mini-
mal human effort—sometimes dramatically so (e.g., Jetliner on ImageNet or
Airplane on MIT). It is important to note that all methods are using identical
CNN features and the same propagation algorithm, hence our gains exactly
show the impact of making wiser annotation choices.

Surprisingly, we find that the Passive baseline outperforms the active
PageRank method [11]. We believe this is because PageRank emphasizes
the influence property more, and, despite its clustering component, fails to
select sufficiently diverse examples (in [11] no comparison with a passive
baseline is shown). On the other hand, our method takes into account in-
fluence, diversity, and uncertainty to choose good candidates for annotation.
This leads to better annotation choices and in turn better propagation. We
also see that omitting uncertainty from our approach decreases accuracy,
showing the value of this segmentation-specific active selection component.

We also see that our gains are much higher for larger collections (>
100 images). Larger collections exhibit both greater redundancy and multi-
ple modes within the data. Our method successfully exploits these patterns
while making annotation choices. For e.g., in MIT “Airplanes", we correctly
localize 90% of the images with only 30% of the data labeled by annotators.
In contrast, the Passive and active PageRank baselines require significantly
more annotations (55% and 70%, resp.) to achieve the same accuracy.

We also compare with the state of the art segmentation propagation ap-
proach from Guillaumin et al. [5]. We consider all images which are com-
mon between our experimental setup and that of [5]. For the same amount
of labeled data our active segmentation propagation approach achieves a
Jaccard score of 65% as opposed to 62.63% by [5]. More importantly, re-
ducing the supervision budget for our method, we achieve the same accuracy
as this (passive) state of the art propagation method [5] when using 26% less
human-annotated data. This large savings in human effort shows the clear
value of actively determining where human guidance is most needed.

3.2 Weakly supervised foreground segmentation
Next we test our method in a purely weakly supervised setting against sev-
eral existing methods. In this special case, weak supervision (i.e., all images
have an object from the same category) is the only information available. No
additional human annotation is requested. Here we briefly describe our re-
sults, please see [6] for details.

On MIT dataset we outperform several existing methods [3, 7, 8, 9, 10]
in majority of the classes. On ImageNet, our method outperforms the state
of the art [14] by a considerable margin (4.44%), which again highlights the
strengths of our joint segmentation graph. With nearly 1M images, a gain of
4.44% means that we correctly localize 41,715 more images than [14].

Figure 3 shows qualitative results. Our method is able to segment ob-
jects well in spite of large intra-class variations. Because of the joint seg-
mentation graph, our method can successfully segment some challenging
instances where the object is not easily separable from the background but
matches well with similar regions in easier images.

MIT dataset ImageNet dataset

Figure 3: Qualitative results for weakly supervised joint segmentation.
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