
Delving Deeper into Convolution Networks for Learning Video Representation

Nicolas Ballas1, Li Yao1 Chris Pal1,2 Aaron Courville1

1MILA, Université de Montréal. 2 Polytechnic Montréal.

1 Introduction

Video analysis and understanding represents a major challenge for com-
puter vision and machine learning research. While previous work has tra-
ditionally relied on hand-crafted and task-specific representations, there is a
growing interest in designing general video representations that could help
solve tasks in video understanding such as human action recognition, video
retrieval or video captionning [12].

Two-dimensional Convolutional Neural Networks (CNN) have exhib-
ited state-of-art performance in still image tasks such as classification or de-
tection. However, such models discard temporal information that has been
shown to provide important cues in videos [9]. On the other hand, recur-
rent neural networks (RNN) have demonstrated the ability to understand
temporal sequences in various learning tasks such as speech recognition [7]
or machine translation [1]. Consequently, Recurrent Convolution Networks
(RCN) [6] that leverage both recurrence and convolution have recently been
introduced for learning video representation. Such approaches typically ex-
tract “visual percepts” by applying a 2D CNN on the video frames and then
feed the CNN activations to an RNN in order to characterize the video tem-
poral variation.

Previous works on RCNs has tended to focus on high-level visual per-
cepts extracted from the 2D CNN top-layers. CNNs, however, hierarchically
build-up spatial invariance through pooling layers. While CNNs tends to
discard local information in their top layers, frame-to-frame temporal vari-
ation is known to be smooth. The motion of video patches tend to be re-
stricted to a local neighborhood. For this reason, we argue that current RCN
architectures are not well suited for capturing fine motion information. In-
stead, they are more likely focus on global appearance changes such as shot
transitions. To address this issue, we introduce a novel RCN architecture
that applies an RNN not solely on the 2D CNN top-layer but also on the
intermediate convolutional layers. Convolutional layer activations, or con-
volutional maps, preserve a finer spatial resolution of the input video from
which local spatio-temporal patterns are extracted.

Applying an RNN directly on intermediate convolutional maps, how-
ever, inevitably results in a drastic number of parameters characterizing the
input-to-hidden transformation due to the convolutional maps size. On the
other hand, convolutional maps preserve the frame spatial topology. We
propose to leverage this topology by introducing sparsity and locality in
the RNN units to reduce the memory requirement. We extend the GRU
model [5] and replace the fully-connected RNN linear product operation
with a convolution. Our GRU-extension therefore encodes the locality and
temporal smoothness prior of videos directly in the model structure.

2 GRU-RCN

Let’s consider (x1
t , ...,x

L−1
t ,xL

t )(t=1..T ), a set of 2D convolutional maps ex-
tracted from L layers at different time steps in a video. We propose to apply
L RNNs independently on each convolutional map. We define L RNNs as
φ 1, ...,φ L, such that hl

t = φ l(xl
t ,hl

t−1). The hidden representation of the final
time step h1

T , ...,h
L
T are then fed to a classification layer in the case of action

recognition, or to a text-decoder RNN for caption generation.
To implement the RNN recurrent function φ l , we propose to leverage

Gated Recurrent Units [5]. GRU models input to hidden-state and hidden
to hidden transitions using fully connected units. However, convolutional
map inputs are 3D tensors (spatial dimension and input channels). Apply-
ing a GRU directly can lead to a drastic number of parameters. Let N1, N2
and Ox be the input convolutional map spatial size and number of channels.
Applying a GRU directly would require input-to-hidden parameters Wl , Wl

z
and Wl

r to be of size N1 ×N2 ×Ox ×Oh where Oh is the dimensionality of
the GRU hidden representation. To tackle this issue, we replace the fully-

… 

… … … … 

… 

… 

… 

… 

Figure 1: Our approach leverages convolutional maps from different lay-
ers of a pretrained-convnet. Each map is given as input to a convolutional
GRU-RCN at different time-step. Bottom-up connections may be optionally
added between RCN layers.

connected units in GRU with convolution operations. Our recurrent units
therefore have sparse connectivity and share their parameters across differ-
ent input spatial and temporal locations:

zl
t = σ(Wl

z ∗xl
t +Ul

z ∗hl
t−1), (1)

rl
t = σ(Wl

r ∗xl
t +Ul

r ∗hl
t−1), (2)

h̃l
t = tanh(Wl ∗xl

t +U∗ (rl
t �hl

t−1), (3)

hl
t = (1− zl

t)h
l
t−1 + zl

t h̃
l
t , (4)

where ∗ denotes a convolution operation. In this formulation, Model param-
eters W,Wl

z,Wl
r and Ul ,Ul

z,Ul
r are 2D-convolutional kernels. Our model

results in hidden recurrent representation that preserves the spatial topol-
ogy, hl

t = (hl
t(i, j)) where hl

t(i, j)) is a feature vector defined at the location
(i, j). To ensure that the spatial size of the hidden representation remains
fixed over time, we use zero-padding in the recurrent convolutions.

Using convolution parameters Wl , Wl
z and Wl

r have a size of k1 × k2 ×
Ox×Oh where k1×k2 is the convolutional kernel spatial size (usually 3×3),
chosen to be significantly lower than convolutional map size N1 ×N2. The
candidate hidden representation h̃t(i, j), the activation gate zk(i, j) and the
reset gate rk(i, j) are defined based on a local neigborhood of size (k1 ×
k2) at the location(i, j) in both the input data xt and the previous hidden-
state ht−1. In addition, the size of receptive field associated with hl(i, j)t
increases in the previous representation hl

t−1,h
l
t−2... as we go back further

in time. Our model is therefore capable of characterizing spatio-temporal
patterns with high spatial variation in time.

We can also extend our model by adding bottom-up connection. We
precondition each GRU-RNN on the output of the previous GRU-RNN at
the current time step: hl

t = φ l(hl
t−1,h

l−1
t ,xl

t). Adding this extra-connection
brings more flexibility and gives the opportunity for the model to lever-
age representations with different resolutions. Adding this extra-connection
brings more flexibility and gives the opportunity for the model to leverage
representations with different resolutions.

3 Experimentation

3.1 Action Recognition

We evaluate our approach on the UCF101 dataset [10]. We report results
on the dataset UCF101 first split. We follow the training procedure and
evalution introduced by the two-stream framework [9].



We extract visual “percept” using VGG-16 CNNs that consider either
RGB or flow inputs. VGG-16 CNNs are pretrained on ImageNet and fine-
tuned on the UCF-101 dataset, following the protocol in Wang et al. [14].
We then extract the convolution maps from pool2, pool3, pool4, pool5 layers
and the fully-connected map from layer fc-7. Those features maps are given
as inputs to our RCN models.

Method RGB Flow
VGG-16 78.0 85.4

VGG-16 RNN 78.1 84.9
GRU-RCN 79.9 85.7

Stacked-GRU RCN 78.3 -
Bi-directional GRU-RCN 80.7 -

Two-Stream [9] 72.8 81.2
Two-Stream + LSTM [6] 71.1 76.9

Improved Two-Stream [14] 79.8 85.7
C3D one network [12], 1 million videos as training 82.3 -

C3D ensemble [12], 1 million videos as training 85.2 -
Table 1: Classification accuracy on the UCF101 split 1.

In Table 1, we evaluate three architectures, GRU-RCN, Stacked GRU-
RCN, adding bottom-up connection, and Bi-direcitonal GRU-RCN that runs
two GRU-RCN, one forward and one backward in time. We compare our
approaches with two different baselines, VGG-16 [14] and VGG-16 RNN
that applies a GRU-RNN on top of fc-7 representation. GRU-RCN out-
performs the baselines, showing the benefit of delving deeper into a CNN.
Stacked-GRU RCN performs significantly lower than GRU-RCN. We ar-
gue that bottom-up connection, increasing the depth of the model, combined
with the lack of training data make the Stacked-GRU RCN learning difficult.
The Bi-directional GRU-RCN performs the best among the GRU-RCN. Bi-
directional GRU-RCN obtains a gain 3.4% in term of performances, rel-
atively to the baselines that focus only the VGG-16 top layer with RGB
inputs.

We also investigate the combination of the RGB and flow streams fol-
lowing [14]. Fusion the VGG-16 model baseline achieve an accuracy of
89.1. Combining the RGB Bi-directional GRU-RCN with the flow GRU-
RCN achieves a performance gain of 1.9% over baseline, reaching 90.8.
Our model is on part with [14] that obtain state-of-art results using both
RGB and flow streams which obtains 90.9.

3.2 Video Captioning

We evaluate our approach on the captioning problem using YouTube2Text
dataset [4]. To perform video captioning, we use the encoder-decoder
framework with soft-attention based decoder [15]. As for encoder, we com-
pare both VGG-16 CNN and Bi-directional GRU-RCN.

Table 2 reports the performance of our proposed method using auto-
matic BLEU, METEOR and CIDER metrics. All models are early-stopped
based on the negative-log-likelihood (NLL) of the validation set. We then
select the model that performs best on the validation set according to the
metric at consideration.

The first two lines of Table 2 compare the performances of the VGG-16
and Bi-directional GRU-RCN encoder. Results clearly show the superior-
ity of the Bi-Directional GRU-RCN Encoder as it outperforms the VGG-16
Encoder on all three metrics. In particular, GRU-RCN Encoder obtains a

YouTube2Text
Model BLEU METEOR CIDEr
VGG-16 0.3700 0.2640 0.4330
Bi-dir GRU-RCN 0.4100 0.2850 0.5010
GoogleNet 0.4128 0.2900 0.4804
GoogleNet + Bidir GRU-RCN 0.4963 0.3170 0.6801
GoogleNet + HRNE [8] 0.436 0.321 -
VGG + p-RNN [16] 0.443 0.311 -
VGG + C3D + p-RNN [16] 0.499 0.326 -
Soft-attention [15] 0.4192 0.2960 0.5167
Venugopalan et al. [13] 0.3119 0.2687 -
+ Extra Data (Flickr30k, COCO) 0.3329 0.2907 -
Thomason et al. [11] 0.1368 0.2390 -

Table 2: Performance of different variants of the model on YouTube2Text
for video captioning.

performance gain of 10% compared to the VGG-16 Encoder according to
the BLEU metric. Combining our GRU-RCN Encoder that focuses on ac-
tion with a GoogleNet Encoder that captures visual entities further improve
the performances.

Our GoogleNet + Bi-directional GRU-RCN approach significantly out-
performs Soft-attention [15] that relies on a GoogLeNet and cuboids-based
3D-CNN Encoder, in conjunction to a similar soft-attention decoder. This
result indicates that our approach is able to offer more effective representa-
tions. According to the BLEU metric, we also outperform other approaches
using more complex decoder schemes such as spatial and temporal atten-
tion decoder [16] or a hierarchical RNN decoder [8] Our approach is on par
with [16], without the need of using a C3D-encoder that requires training on
large-scale video dataset.

Acknowledgments

The authors would like to acknowledge the support of the following agen-
cies for research funding and computing support: NSERC, Calcul Québec,
Compute Canada, the Canada Research Chairs and CIFAR. We would also
like to thank the developers of Theano [2, 3] , for developing such a power-
ful tool for scientific computing.

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

[2] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new features and
speed improvements. NIPS Workshop, 2012.

[3] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU
and GPU math expression compiler. In SciPy, 2010.

[4] D. Chen and W. Dolan. Collecting highly parallel data for paraphrase
evaluation. In ACL. Association for Computational Linguistics, 2011.

[5] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv, 2014.

[6] J. Donahue, L. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. arXiv, 2014.

[7] A. Graves and N. Jaitly. Towards end-to-end speech recognition with
recurrent neural networks. In ICML, 2014.

[8] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical recurrent
neural encoder for video representation with application to captioning.
arXiv, 2015.

[9] K. Simonyan and A. Zisserman. Two-stream convolutional networks
for action recognition in videos. In NIPS, 2014.

[10] K. Soomro, A. Roshan Zamir, and M. Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv, 2012.

[11] J. Thomason, S. Venugopalan, S. Guadarrama, K. Saenko, and
R. Mooney. Integrating language and vision to generate natural lan-
guage descriptions of videos in the wild. In COLING, 2014.

[12] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. C3d:
generic features for video analysis. arXiv, 2014.

[13] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and
K. Saenko. Translating videos to natural language using deep recurrent
neural networks. NAACL, 2015.

[14] L Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good practices for
very deep two-stream convnets. arXiv, 2015.

[15] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and
A. Courville. Describing videos by exploiting temporal structure. In
ICCV, 2015.

[16] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video paragraph
captioning using hierarchical recurrent neural networks. arXiv, 2015.

2


	Introduction
	GRU-RCN
	Experimentation
	Action Recognition
	Video Captioning


