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Figure 1: A mean-field iteration as a CNN. A single iteration of the mean-field
algorithm can be modelled as a stack of common CNN layers.

1 Introduction

Pixel-level labelling tasks, such as semantic segmentation, play a central
role in image understanding. Recent approaches [4, 8] have attempted to
harness the capabilities of deep learning techniques for image recognition
to tackle pixel-level labelling tasks. One central issue in this methodology
is the limited capacity of deep learning techniques to delineate visual ob-
jects. To solve this problem, we introduce a new approach that combines the
strengths of Convolutional Neural Networks (CNNs) and Conditional Ran-
dom Fields (CRFs)-based probabilistic graphical modelling. To this end, we
formulate mean-field approximate inference for the fully-connected CRFs
with Gaussian pairwise potentials as Recurrent Neural Networks (RNNs).
This network, called CRF-RNN, is then plugged in as a part of a CNN to
obtain a deep network that has advantages of both CNNs and CRFs. Im-
portantly, our system fully integrates CRF modelling with CNNs, making it
possible to train the whole deep network end-to-end with the usual propa-
gation algorithm, avoiding offline post-processing methods for object delin-
eation.

We apply the proposed method to the problem of semantic image seg-
mentation, obtaining top results on the challenging Pascal VOC benchmark
and Pascal Context dataset.

2 A Mean-field Iteration as a Stack of CNN Layers

A key contribution of this paper is to show that the mean-field CRF infer-
ence can be reformulated as a RNN. To this end, we first consider individual
steps of the mean-field algorithm summarized in Algorithm 1, and describe
them as CNN layers as shown in Figure 1. Our contribution is based on the
observation that filtering-based mean-field approximate inference for fully-
connected CRFs relies on applying Gaussian spatial and bilateral filters on
the mean-field approximates in each iteration. Unlike the standard convolu-
tional layer in a CNN, in which filters are fixed after the training stage, we
use edge-preserving Gaussian filters [12, 16], coefficients of which depend
on the original spatial and appearance information of the image. These fil-
ters have the additional advantages of requiring a smaller set of parameters,
despite the filter size being potentially as big as the image.

We reformulate the steps of the inference algorithm as CNN layers, it
is essential to be able to calculate error differentials in each layer w.r.t. its
inputs in order to be able to backpropagate the error differentials to previ-
ous layers during training. In our formulation, CRF parameters such as the
weights of the Gaussian kernels and the label compatibility function can be
optimized automatically during the training of the full network.

Once the individual steps of the algorithm are broken down as CNN
layers, the full algorithm can then be formulated as an RNN. We illustrate
this in Algorithm 1, where we use Ui(l) to denote the negative of the unary
energy, i.e., Ui(l) =−ψu(Xi = l). In the conventional CRF setting, this input
Ui(l) to the mean-field algorithm is obtained from an independent classifier.

Algorithm 1 Mean-field in fully-connected CRFs [6], broken down to com-
mon CNN operations.

Qi(l)← 1
Zi

exp(Ui(l)) for all i . Initialization
while not converged do

Q̃(m)
i (l)← ∑ j 6=i k(m)(fi, f j)Q j(l) for all m

. Message Passing
Q̌i(l)← ∑m w(m)Q̃(m)

i (l)
. Weighting Filter Outputs

Q̂i(l)← ∑l′∈L µ(l, l′)Q̌i(l′)
. Compatibility Transform

Q̆i(l)←Ui(l)− Q̂i(l)
. Adding Unary Potentials

Qi← 1
Zi

exp
(
Q̆i(l)

)
. Normalizing

end while

3 The End-to-end Trainable Network

We present an end-to-end deep learning system for semantic image segmen-
tation. We first explain how repeated mean-field iterations can be organized
as an RNN. We then draw the completing picture for our system.

3.1 CRF as RNN

As shown in Fig. 1, one iteration of the mean-field algorithm can be for-
mulated as a stack of common CNN layers. We use the function fθ to de-
note the transformation done by one mean-field iteration: given an image
I, pixel-wise unary potential values U and an estimation of marginal prob-
abilities Qin from the previous iteration, the next estimation of marginal
distributions after one mean-field iteration is given by fθ (U,Qin, I). The
vector θ = {w(m),µ(l, l

′
)},m ∈ {1, ...,M}, l, l ′ ∈ {l1, ..., lL} represents the

CRF parameters.
Multiple mean-field iterations can be implemented by repeating the above

stack of layers in such a way that each iteration takes Q value estimates from
the previous iteration and the unary values in their original form. This is
equivalent to treating the iterative mean-field inference as a RNN. Using the
notation in the figure, the behaviour of the network is given by the following
equations where T is the number of mean-field iterations:

H1(t) =

{
softmax(U), t = 0
H2(t−1), 0 < t ≤ T,

(1)

H2(t) = fθ (U,H1(t), I), 0≤ t ≤ T, (2)

Y (t) =

{
0, 0≤ t < T
H2(t), t = T.

(3)

We name this RNN structure CRF-RNN. Parameters of the CRF-RNN
are the same as the mean-field parameters and denoted by θ here. Since
the calculation of error differentials w.r.t. these parameters in a single iter-
ation can be learnt in the RNN setting using the standard backpropagation
through time algorithm [10, 14]. It was shown in [6] that the mean-field iter-
ative algorithm for fully-connected CRF converges in less than 10 iterations.
Furthermore, in practice, after about 5 iterations, increasing the number of
iterations usually does not significantly improve results [6]. Therefore, it
does not suffer from the vanishing and exploding gradient problem inherent
to deep RNNs [1, 13].

3.2 Completing the Picture

Our approach comprises a fully convolutional network stage, which pre-
dicts pixel-level labels without considering structure, followed by a CRF-
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Figure 2: The End-to-end Trainable Network. Schematic visualization of our full
network which consists of a CNN and the CNN-CRF network. Best viewed in colour.

RNN stage, which performs CRF-based probabilistic graphical modelling
for structured prediction. The complete system, therefore, unifies strengths
of both CNNs and CRFs and is trainable end-to-end using the backpropa-
gation algorithm [7] and the Stochastic Gradient Descent (SGD) procedure.
During training, a whole image (or many of them) can be used as the mini-
batch and the error at each pixel output of the network can be computed
using an appropriate loss function such as the softmax loss with respect to
the ground truth segmentation of the image. We used the FCN-8s architec-
ture of [8] as the first part of our network, which provides unary potentials
to the CRF. This network is based on the VGG-16 network [15] but has been
restructured to perform pixel-wise prediction instead of image classification.
The complete architecture of our network, including the FCN-8s part can be
found in the our publicly available source code and models.

In the forward pass through the network, once the computation enters
the CRF-RNN after passing through the CNN stage, it takes T iterations for
the data to leave the loop created by the RNN. Once the output Y leaves
the loop, next stages of the deep network after the CRF-RNN can continue
the forward pass. In our setup, a softmax loss layer directly follows the
CRF-RNN and terminates the network.

During the backward pass, once the error differentials reach the CRF-
RNN’s output Y , they similarly spend T iterations within the loop before
reaching the RNN input U in order to propagate to the CNN which provides
the unary input. In each iteration inside the loop, error differentials are
computed inside each component of the mean-field iteration as described in
Section 2. We note that unnecessarily increasing the number of mean-field
iterations T could potentially result in the vanishing and exploding gradient
problems in the CRF-RNN. We, however, did not experience this problem
during our experiments.

4 Experiments

In order to evaluate our approach with existing methods under the same
circumstances, we conducted two main experiments with the Pascal VOC
2012 dataset, followed by a qualitative experiment.

In the first experiment, following [8, 9, 11], we used a training set con-
sisted of VOC 2012 training data (1464 images), and training and validation
data of [5], which amounts to a total of 11,685 images. After removing
the overlapping images between VOC 2012 validation data and this training
dataset, we were left with 346 images from the original VOC 2012 valida-
tion set to validate our models on. We call this set the reduced validation set
in the sequel. Annotations of the VOC 2012 test set, which consists of 1456
images, are not publicly available and hence the final results on the test set
were obtained by submitting the results to the Pascal VOC challenge evalu-
ation server [3]. Regardless of the smaller number of images, we found that
the relative improvements of the accuracy on our validation set were in good
agreement with the test set.

As a first step we directly compared the potential advantage of learning
the model end-to-end with respect to alternative learning strategies. These
are plain FCN-8s without applying CRF, and with CRF as a postprocessing

method disconnected from the training of FCN, which is comparable to the
approach described in [2] and [11]. In all cases, the resolution of the input
and the output of FCN-8s is 500×500, the crop layer in the FCN-8s aligns
the input image and the output feature map. This feature map is used as the
input of the CRF-RNN layers. The results are reported in Table 1 and show
a clear advantage of the end-to-end strategy over the offline application of
CRF as a post-processing method. This can be attributed to the fact that
during the SGD training of the CRF-RNN, the CNN component and the
CRF component learn how to co-operate with each other to produce the
optimum output of the whole network.

Method Without COCO With COCO
Plain FCN-8s 61.3 68.3

FCN-8s and CRF disconnected 63.7 69.5
End-to-end training of

CRF-RNN 69.6 72.9

Table 1: Mean IU accuracy of our approach, CRF-RNN, compared with
similar methods, evaluated on the reduced VOC 2012 validation set.

Our approach achieves 74.7% mean IOU score over 20 classes on the
test set of Pascal VOC 2012, and 39.28% mean IOU score over 59 classes
on Pascal Context dataset.

5 Conclusions

The paper formulates a fully-connected CRFs as RNNs. In semantic image
segmentation application, we show this lead to further improvement over
the fully-convolutional neural networks.
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