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State-of-the-art learning based boundary detection methods require ex-
tensive training data. Since labelling object boundaries is one of the most
expensive types of annotations, there is a need to relax the requirement to
carefully annotate images to make both the training more affordable and to
extend the amount of training data.

In this paper we focus on learning object boundaries in a weakly super-
vised fashion and show that high quality object boundary detection can be
obtained without using any object-specific boundary annotations. We pro-
pose several ways of generating object boundary annotations with different
levels of supervision, from just using a bounding box oriented object de-
tector to using the boundary detector trained on generic boundaries. For
generating weak object boundary annotations we consider different sources,
fusing unsupervised image segmentation [5] and object proposal methods
[8, 12] with object detectors [6, 9]. We show that bounding box annotations
alone suffice to achieve objects boundary estimates with high quality.

We present results using a decision forest (SE) [3] and a convnet edge
detector (HED) [13]. We report top performance on Pascal object boundary
detection [4, 7] with our weak-supervision approaches already surpassing
previously reported fully supervised results.

Our main contributions are summarized below:
- We introduce the problem of weakly supervised object-specific bound-

ary detection.
- We show that good performance can be obtained on BSDS, Pascal

VOC12, and SBD boundary estimation using only weak-supervision (lever-
aging bounding box detection annotations without the need of instance-wise
object boundary annotations).

- We report best known results on PascalVOC12, and SBD datasets. Our
weakly supervised results alone improve over the previous fully supervised
state-of-the-art.

Further information is available at https://goo.gl/kDVZwS.

Robustness to annotation noise
We start by exploring weakly supervised training for generic boundary

detection, as considered in BSDS.
Model based approaches such as Canny [2] and F&H [5] are able to

provide low quality boundary detections. We notice that correct boundaries
tend to have consistent appearance, while erroneous detections are mostly
inconsistent. Robust training methods should be able to pick-up the signal
in such noisy detections.

In Figure 2 we report our results when training a structured decision
forest (SE) and a convnet (HED) with noisy boundary annotations. When
training SE using either Canny (“SE(Canny)”) or F&H (“SE(F&H)”) we
observe a notable jump in boundary detection quality. HED(SE(F&H))
provides better boundaries than SE(F&H) alone, and reaches quality com-
parable to the classic gPb method [1].

Conclusion SE is surprisingly robust to annotation noise during training.
HED is also robust but to a lesser degree. By using noisy boundaries gener-
ated from unsupervised methods, we can reach a performance comparable
to the bulk of current methods.

Weakly supervised boundary annotations
We propose to train boundary detectors using data generated from weak

annotations. Our weakly supervised models are trained in a regular fashion,
but use generated (noisy) training data as input instead of human annota-
tions. We consider boundary annotations generated with three different lev-
els of supervision: fully unsupervised, using only detection annotations, and
using both detection annotations and BSDS boundary annotations (e.g. us-
ing generic boundary annotation, but zero object-specific boundaries). Dif-
ferent variants of weakly supervised boundary annotations are illustrated in
Figure 3.

Image SE(VOC) Det.+SE(VOC)

SE(BSDS) SE(weak) Det.+SE(weak)

Figure 1: Object boundaries differ from generic boundaries. The proposed
weakly supervised approach drives boundary detection towards the objects
of interest. Red/green indicate false/true positive pixels, grey is missing
recall. All methods are shown at 50% recall.

BBs We use the bounding box annotations to train a class-specific object
detector [6, 9]. We then apply this detector over the training set (and pos-
sibly a larger set of images), and retain boxes with confidence scores above
0.8.
F&H As a source of unsupervised boundaries we consider the image seg-
mentation technique proposed by [5] (F&H). We intersect these boundaries
with detection bounding boxes from [9] (F&H∩BBs). Only the segment
boundaries contained inside a bounding box are retained.
GrabCut A way to exclude internal object boundaries, is to extract object
contours via figure-ground segmentation of the detection bounding box [9].
We use GrabCut [10] for this purpose. For GrabCut∩BBs a segment is only
accepted if a detection has the IoU ≥ 0.7. Otherwise, the whole region is
marked as ignore.
Object proposals Another way to bias generation of boundary annota-
tions towards object contours is to consider object proposals: SeSe [12] and
MCG [8]. SeSe∩BBs and MCG∩BBs are generated by matching proposals
to bounding boxes [6] (if IoU≥ 0.9).
Consensus boundaries We consider using the consensus between object
proposal boundaries. The boundary is considered to be present if the agree-
ment is higher than 70%, otherwise the boundary is ignored. We denote
such annotations as “cons.”, e.g. cons. MCG∩BBs. Another way to gener-
ate sparse (consensus-like) boundaries, is to threshold the boundary proba-
bility map out of SE(·) model. SE(SeSe∩BBs) uses the top 15% quan-
tile per image as weakly supervised annotations. We can also do con-
sensus between methods. cons. S&G ∩ BBs is the intersection between
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Figure 2: BSDS results. Canny and F&H points indicate the boundaries
used as noisy annotations.

https://goo.gl/kDVZwS


Ground truth F&H F&H∩BBs GrabCut ∩ BBs SeSe ∩ BBs

MCG ∩ BBs cons. MCG ∩ BBs SE(SeSe ∩ BBs) cons. S&G∩BBs cons. all methods ∩ BBs
Figure 3: Different generated boundary annotations. Cyan/black indicates positive/ignored boundaries.

Family Method mF mAP

Other GT Hariharan et al. [7] 28 21

SE

GT
SB(SBD) orig. [11] 39 32
SB(SBD) 43 37
Det.+SE(SBD) 51 45

Other
GT

Det.+SE(BSDS) 51 44
Det.+MCG(BSDS) 50 42

Weakly
super-
vised

SB(SeSe∩BBs) 40 34
SB(MCG∩BBs) 42 35
Det.+SE(SeSe∩BBs) 48 42
Det.+SE(MCG∩BBs) 51 45

HED

GT
HED(SBD) 44 41
Det.+HED(SBD) 49 45

Other
GT

HED(BSDS) 38 32
Det.+HED(BSDS) 49 44

Weakly
super-
vised

HED(cons. MCG∩BBs) 41 37
HED(cons. S&G∩BBs) 44 39
Det.+HED(cons. MCG∩BBs) 48 44
Det.+HED(cons. S&G∩BBs) 52 47

Table 1: SBD results. Results are mean F(ODS)/AP across all 20 categories.
(·) denotes the data used for training. See also Figure 4. Bold indicates our
best weakly supervised results.
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Figure 4: SBD results per class. (·) denotes the data used for training. Det.+
HED(weak) refers to the model Det.+HED(cons. S&G∩BBs).

SE(SeSe∩BBs), SeSe and GrabCut boundaries (fully unsupervised); while
cons. all methods∩BBs is the intersection between MCG, SeSe and Grab-
Cut (uses BSDS data).

SBD boundary detection results
In this section we analyse the performance of our weakly supervised

variants trained with SE and HED on SBD [7]. We are interested in external
object boundaries of the specific semantic class. Internal boundaries are
ignored during evaluation [7]. The results are presented in Figure 4 and in
Table 1.
Fully supervised Rather than training/testing with 20 SE models plus an
image classifier [11], we propose to use a single SE model with a detector
[6]. By computing a per-pixel maximum among all detection boxes and
their score, we construct an “objectness map” that we multiply with the
boundary probability map. False positive boundaries are thus down-scored,
and boundaries in high confidence regions get boosted.

Applying SE model plus object detection at test time outperforms the
situational boundary detector [11] as well as the Inverse Detectors [7]. The
model trained with SE on ground truth performs as well as the HED detec-
tor. Both of the models are good at detecting external object boundaries;
however SE, being a more local, triggers more on internal boundaries than
HED. Even so, in the SBD evaluation these are ignored. This explains the
small gap in the performance between SE and HED on this benchmark.
Weakly supervised The models trained with the proposed weakly super-
vised boundary variants perform on par with the fully supervised detectors,
while only using bounding boxes or generic boundary annotations. We show
in Table 1 the top result with the Det. + HED(cons. S&G∩BBs) model,
achieving the state-of-the-art performance on the SBD benchmark. Figure 4
shows our weakly supervised approach considerably outperforms [7, 11] on
all 20 classes.

Conclusion
The presented experiments show that when using the bounding box an-

notations for training an object detector, one can also train a high quality
object boundary detector without additional annotation effort. Using boxes
alone, our proposed weak-supervision techniques improve over previously
reported fully supervised results for object-specific boundaries. When using
generic boundary or ground truth annotations, we also achieve the top per-
formance on the object boundary detection task, outperforming previously
reported results by a large margin.
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