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Finsler Elastic Metric: Minimal path problem [3] is posed on a bounded
domain Ω and a metric F (potentially asymmetric) at each point x ∈ Ω. Let
A denote the collection of Lipschitz paths Γ : [0, 1]→Ω, and the path length
` can be measured through the metric F as:

`(Γ) =
∫ 1

0
F
(
Γ(t), Γ̇(t)

)
dt, (1)

where Γ̇(t) = d
dt Γ(t). The minimal action map U from an initial source

points s, is the minimal energy of any path joining x ∈ Ω to s:

U(x) := min
{
`(Γ);Γ ∈A, Γ(1) = x, Γ(0) = s

}
. (2)

The minimal action map U is the unique viscosity solution to an Eikonal
PDE, defined in terms of the dual metric F∗. The minimal action map U
satisfies the Eikonal equation for each x ∈ Ω:{

F∗(x,−∇U(x)
)
= 1,

U(s) = 0,
where F∗(x,~u) = sup

~v 6=0

〈~u,~v〉
F(x,~v)

. (3)

The metric F considered in this paper combine a symmetric part, defined
in terms of a symmetric positive tensor field M, and an asymmetric part
involving a vector field ~ω:

F(x,~u) =
√

〈~u,M(x)~u〉−〈~ω(x), ~u〉. (4)

We require 〈~ω(x),M−1(x)~ω(x)〉< 1 to ensure the metric positivity.
Following Mumford [6], the weighted Euler’s elastica curves, minimiz-

ing the following bending energy:

L(Γ) =
∫ L

0

1
Φ
(
Γ(s)

)(1+ακ
2(s)

)
ds (5)

L denotes the classical curve length, s is the arc-length parameter. κ is the
curvature and Φ is a velocity function.

The first step is to cast the elastica energy (5) in the form of path length
with respect to a degenerate Finsler metric. For that purpose, let S1 = [0, 2π)
be the space of angles with periodic boundary conditions. For each θ , let
~vθ = (cosθ ,sinθ) be the corresponding unit vector. It is known that

d
dt

(
Γ̇(t)
‖Γ̇(t)‖

)
= κ(t)‖Γ̇(t)‖

(
Γ̇(t)
‖Γ̇(t)‖

)⊥
.

D efining Euclidean arc-length by ds = ‖Γ′(t)‖dt, one has∫ L

0
(1+ακ

2(s))ds =
∫ 1

0

(
‖Γ̇(t)‖+ α |θ̇(t)|2

‖Γ̇(t)‖

)
dt

=
∫ 1

0
F∞

(
γ(t), γ̇(t)

)
dt, (6)

where we define the Finsler metric F∞ as

F∞(x̄, ū) :=

{
‖u‖+ α |ν |2

‖u‖ , if u ∝~vθ ,

+∞, otherwise.
(7)

for any orientation lifted point x̄ = (x,θ) ∈ Ω̄ = Ω× S1, any vector ū =
(u,ν)∈R2×R in the tangent space, and where ∝ denotes positive collinear-
ity. The Finsler metric F∞ defined in (7) is too singular to apply the numer-
ical algorithm such as Fast Marching method [5] to compute U . Hence we
introduce a family of orientation lifted Finsler metrics over the lifting do-
main Ω̄, depending on a penalization parameter λ � 1 as follows:

Fλ (x̄, ū) :=
√

λ 2‖u‖2 +2αλ |ν |2 − (λ −1)〈~vθ ,u〉, (8)

As λ → ∞ one has:

Fλ (x̄, ū) =O
(

1
λ

)
+‖u‖+ α|ν |2

‖u‖
− (λ −1)

(
‖u‖−〈~vθ ,u〉

)
,

which tends to F∞ as λ → ∞. In order to apply Fλ to image analysis, we
incorporate the image data dependent velocity function Φ to Fλ to obtain
the weighted Finsler elastic metric J :

J (x̄, ū) =
√

λ 2‖u‖2 +2αλ |ν |2
Φ(x̄)

− (λ −1)
〈~vθ ,u〉
Φ(x̄)

. (9)

where α > 0 is a constant. Φ is defined over the orientation lifted domain
and should be large along the expected image features such as boundaries
or curves. We calculate Φ by the steerable edge detectorinvoking high order
Gaussian kernel [4]. The minimal action map associated to metric J , de-
noted by Ws can be efficiently computed by the Fast Marching method [5]
with s denoting the initial source point.
Perceptual Grouping: Perceptual grouping is relevant to the task of curve
reconstruction and completion [2]. The class of geodesic distance based
perceptual grouping models was firstly introduced by [2] using the saddle
points to identify the pairs of points which have to be linked by minimal
paths among the set of key points. Later on, this idea was improved by
[1] by the anisotropic Riemannian metric instead of the isotropic version
adopted in [2]. In this paper, we focus on the perceptual grouping problem
of finding closed contours formed by piecewise smooth minimal paths with
positions in the set H1 ⊆H, where

H := {xi ∈ Ω ⊂ R2, i = 1,2, ...,m;m ≥ 2},

is a collection of physical points provided by user and the orientation lifting
of H is defined as

D :=
{

x̄i = (xi,θi), x̄†
i =

(
xi,mod(θi +π,2π)

)
;

i = 1,2, ...,m, and θi ∈ [0,2π)
}
,

(10)

This grouping problem can be converted to the task of finding closed curves
consisting of curvature penalized minimal paths with the lifting endpoints
in D1 ⊆D, which can be done by searching the pairs of lifting points from
D that have to be joined by minimal paths. The orientation lifting set D is
constructed by manually assigning orientations to each physical position in
H respectively, as expressed in (10). For each physical position x ∈D, there
exists two orientation lifting points: x̄ and x̄†. The set D1 can be identified
through the geodesic distance W with respect to the Finsler elastic metric
J (9).

We firstly specify the first physical point x1 to initialize the algorithm.
The corresponding orientation lifting points of x1, denoting by x̄1, x̄†

1, can be
automatically chosen from D and will be removed from D. Then the closest
vertices z̄∗, z̄∗† corresponding to x̄1 and x̄†

1 can be respectively identified by

z̄∗ := argmin
z̄∈D

Wx̄1(z̄), and z̄∗† := argmin
z̄∈D

Wx̄†
1
(z̄). (11)

With those definitions, the first and second vertice q̄1, q̄2 are chosen simul-
taneously by the following criterion:

(q̄1, q̄2) :=

{
(x̄1, z̄∗), if Wx̄1(z̄∗)<Wx̄†

1
(z∗†),

(x̄†
1, z̄

∗
†), otherwise.

(12)

As a result, the first pair of vertice q̄1, q̄2 ∈ D is computed using (12) and
the geodesic Cq̄1,q̄2 is recovered.



(a) (b)

Figure 1: Perceptual grouping results. (a) Initialization: red and blue dots
are physical positions, in which the red dot is the selected initial position. (b)
Grouping results. Arrows indicate the tangents for each physical positions
denoted by red dots.

Once the first pair of vertice {q̄1, q̄2} is found, we add q̄1, q̄2 to D1,
remove q̄2 from D and compensate q̄1 to D. Next vertice q̄3 is found by

q̄3 := argmin
z̄∈D

Wq̄2(z̄). (13)

We remove q̄3 from D. Again, q̄3 is added to D1 and the geodesic Cq̄2,q̄3

between q̄2 and q̄3 is recovered.
We stop the perceptual grouping method once the vertex q̄1 are iden-

tified by using (13). In other words, once q̄1 can minimize the geodesic
distance with respect to initial source point q̄i where q̄i is the latest vertex
of D1, we stop the algorithm.

The proposed perceptual grouping method can be extended to search n
grouping subsets Di (i = 1,2...n) with constraint ∩n

i=1Di =∅. When D1 is
found, we remove the first vertex q̄1 from D. Then using the same search
procedure as D1, one can easily find D2 from D. Note that the removed
vertice in the previous searching steps will not be compensated to D.
Numerical Experiments: The perceptual grouping result on a synthetic
noisy image is shown in Fig. 1. In Fig. 1(a), we demonstrate the original
image consisting of a set of edges. Red and blue dots with arrows are the
lifting points provided by user as the initialization, where the red dot is
the selected initial physical position. (b) shows the perceptual grouping
results by the proposed method. The identified lifting points in the set D1
are denoted by red dots with arrows. Red curves linking the lifting points
indicate the expected closed curves.

Fig. 2 illustrates the capacity of the proposed curvature penalized mini-
mal path based perceptual grouping method to deal with the edge map with
spurious lifting points. In Fig. 2(a) and (c), different initializations are
shown. Red dots are the selected initial physical positions. (b) and (d) are
the grouping results. Red curves linking the lifting points indicate the ex-
pected closed curves.

The proposed perceptual grouping method can detect more than one
closed curves by only specifying the number of expected closed curves. In
Fig. 3, three closed curves are detected. In Fig. 3, row 1 shows different
initializations with red dots denoting the initial physical position. Row 2
illustrates the first detected closed curve indicated by red curves. Red dots
with arrows denote the selected lifting points in D1. Row 3 illustrates the
second detected closed curve indicated by orange curves. Orange dots with
arrows illustrate the lifting points in D2. The initial physical positions are
selected randomly after D1 was detected. Row 4 demonstrates the third
closed curve using the similar procedure to the detection of D2. We show
the final closed curve detection results in Row 5 which means that the fi-
nal results do not depend on the first point selection, i.e., with any initial
physical position, our algorithm can obtain the expected results.
Remak: In this paper, the orientation lifting points collection is given
manually at this time. Actually, those physical points can be automatically
using method similar to [2] and the orientation for each physical position
can be detected using for instance the corresponding rotated gradient vector
of the edges.
Conclusion: We present a perceptual grouping method using Finsler elastic
minimal path model. This method can group edges into a closed contour
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Figure 2: Perceptual grouping results. (a) and (c) Initializations: Red dots
are the selected initial position. (b) and (d) Perceptual grouping results for
initializations in (a) and (c) respectively. Red dots and the corresponding
arrows are the lifting points chosen to form a closed curve.

Figure 3: Perceptual grouping results by identifying the given lifting points
to three groups. Row 1 initializations. Red dots are the selected initial
positions. Rows 2-4 intermediate grouping results for the corresponding
initializations. Row 5 final grouping results.

through a set of user-provided orientation-lifted points in term of curvature
penalized geodesic distance. Experimental results on noisy images show
that our method indeed can obtain the desired grouping results.
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